# Results of Proficiency Test Ethanol (Bio / Fuel grade) December 2020

Organized by: Institute for Interlaboratory Studies

Spijkenisse, the Netherlands

Author: ing. G.A. Oosterlaken-Buijs

Correctors: ing. A.S. Noordman-de Neef & ing. M. Meijer

Report: iis20C11

## **CONTENTS**

| 1   | INTRODUCTION                                                          | 3  |
|-----|-----------------------------------------------------------------------|----|
| 2   | SET UP                                                                | 3  |
| 2.1 | ACCREDITATION                                                         | 3  |
| 2.2 | PROTOCOL                                                              | 3  |
| 2.3 | CONFIDENTIALITY STATEMENT                                             | 4  |
| 2.4 | SAMPLES                                                               | 4  |
| 2.5 | STABILITY OF THE SAMPLES                                              | 6  |
| 2.6 | ANALYZES                                                              | 6  |
| 3   | RESULTS                                                               | 7  |
| 3.1 | STATISTICS                                                            | 7  |
| 3.2 | GRAPHICS                                                              | 8  |
| 3.3 | Z-SCORES                                                              | 8  |
| 4   | EVALUATION                                                            | 9  |
| 4.1 | EVALUATION PER SAMPLE AND PER TEST                                    | 9  |
| 4.2 | PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES                  | 12 |
| 4.3 | COMPARISON OF THE PROFICIENCY TEST OF DECEMBER 2020 WITH PREVIOUS PTS | 13 |

## Appendices:

| 1. | Data, statistical and graphic results | 15 |
|----|---------------------------------------|----|
| 2. | Number of participants per country    | 56 |
| 3  | Abbreviations and literature          | 57 |

#### 1 Introduction

Since 1995 the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for the analysis of Ethanol (Bio / Fuel grade) in accordance with the latest version of the EN15376 and ASTM D4806 every year. During the annual proficiency testing program 2020/2021 it was decided to continue the round robin for the analysis of Ethanol (Bio / Fuel grade).

In this interlaboratory study 59 laboratories in 32 different countries registered for participation. See appendix 2 for the number of participants per country. In this report the results of the Ethanol (Bio / Fuel grade) proficiency test are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

#### 2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory. It was decided to send three different samples of Ethanol (Bio / Fuel grade), one bottle of 1L labelled #20245 for regular analyzes, one bottle of 50mL labelled #20246 for Inorganic Chloride, Sulfate and total Sulfur determination and one bottle of 250mL labelled #20249 for determination of Nonvolatile matter only.

The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

### 2.1 ACCREDITATION

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO/IEC17043:2010 (R007), since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This PT falls under the accredited scope. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

#### 2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

#### 2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

#### 2.4 SAMPLES

For the preparation of the sample for the regular analyzes a batch of approximately 100 liters of Ethanol (Bio / Fuel grade) was obtained from a European supplier and spiked with Bitrex. After homogenization 96 amber glass bottles of 1L were filled and labelled #20245. The homogeneity of the subsamples was checked by determination of Density in accordance with ASTM D4052 at 20°C and Water in accordance with E203 on 8 stratified randomly selected subsamples.

|                 | Density at 20°C in kg/L | Water<br>in %M/M |  |
|-----------------|-------------------------|------------------|--|
| Sample #20245-1 | 0.78975                 | 0.117            |  |
| Sample #20245-2 | 0.78978                 | 0.119            |  |
| Sample #20245-3 | 0.78976                 | 0.118            |  |
| Sample #20245-4 | 0.78976                 | 0.119            |  |
| Sample #20245-5 | 0.78976                 | 0.118            |  |
| Sample #20245-6 | 0.78976                 | 0.118            |  |
| Sample #20245-7 | 0.78976                 | 0.118            |  |
| Sample #20245-8 | 0.78976                 | 0.119            |  |

Table 1: homogeneity test results of subsamples #20245

From the above test results the repeatabilities were calculated and compared with 0.3 times the corresponding reproducibility of the reference test methods in agreement with the procedure of ISO13528, Annex B2 in the next table.

|                                 | Density at 20°C<br>in kgL | Water in<br>%M/M |
|---------------------------------|---------------------------|------------------|
| r (observed)                    | 0.00002                   | 0.002            |
| reference test method           | ISO12185:96               | E203:16          |
| 0.3 x R (reference test method) | 0.00015                   | 0.023            |

Table 2: evaluation of the repeatabilities of subsamples #20245

The calculated repeatabilities are in agreement with 0.3 times the corresponding reproducibility of the reference test methods. Therefore, homogeneity of the subsamples was assumed.

For the preparation of the sample for the determination of Inorganic Chloride, Sulfate and total Sulfur in Ethanol (Bio / Fuel grade) a batch of about 5L Ethanol (Bio / Fuel grade) was spiked with Sodium Chloride (NaCl) and Sodium Sulfate (Na2SO4) dissolved in water. After homogenization 90 PE bottles of 50mL were filled and labelled #20246.

The homogeneity of the subsamples was checked by determination of Chloride as Cl in accordance with EN15492 on 7 stratified randomly selected subsamples.

|                 | Chloride as Cl<br>in mg/kg |
|-----------------|----------------------------|
| sample #20246-1 | 2.1                        |
| sample #20246-2 | 2.0                        |
| sample #20246-3 | 1.9                        |
| sample #20246-4 | 1.9                        |
| sample #20246-5 | 1.9                        |
| sample #20246-6 | 2.0                        |
| sample #20246-7 | 2.0                        |

Table 3: homogeneity test results of subsamples #20246

From the above test results the repeatability was calculated and compared with 0.3 times the reproducibility of the reference test method in agreement with the procedure of ISO13528, Annex B2 in the next table.

|                                 | Chloride as Cl<br>in mg/kg |
|---------------------------------|----------------------------|
| r (observed)                    | 0.21                       |
| reference test method           | D7319:17                   |
| 0.3 x R (reference test method) | 0.20                       |

Table 4: evaluation of the repeatability of subsamples ##20246

The calculated repeatability is in agreement with 0.3 times the reproducibility of the reference test method. Therefore, homogeneity of the subsamples was assumed.

For the preparation of the sample for the determination of Nonvolatile matter in Ethanol (Bio / Fuel grade) a batch of about 25L Ethanol (Bio / Fuel grade) was spiked with Sodium Chloride (NaCl) dissolved in water. After homogenization 96 amber glass bottles of 250mL were filled and labelled #20249.

The homogeneity of the subsamples was checked by determination of Nonvolatile matter in accordance with EN15691 on 7 stratified randomly selected subsamples.

|                 | Nonvolatile matter in mg/100mL |
|-----------------|--------------------------------|
| sample #20249-1 | 34                             |
| sample #20249-2 | 34                             |
| sample #20249-3 | 33                             |
| sample #20249-4 | 33                             |
| sample #20249-5 | 33                             |
| sample #20249-6 | 34                             |
| sample #20249-7 | 33                             |

Table 5: homogeneity test results of subsamples #20249

From the above test results the repeatability was calculated and compared with 0.3 times the reproducibility of the reference test method in agreement with the procedure of ISO13528, Annex B2 in the next table.

|                                 | Nonvolatile matter in mg/100mL |
|---------------------------------|--------------------------------|
| r (observed)                    | 1.5                            |
| reference test method           | EN15691:09                     |
| 0.3 x R (reference test method) | 1.9                            |

Table 6: evaluation of the repeatability of subsamples ##20249

The calculated repeatability is in agreement with 0.3 times the reproducibility of the reference test method. Therefore, homogeneity of the subsamples was assumed.

To each of the participating laboratories one sample labelled #20245, one sample labelled #20246 and one sample labelled #20249 was sent on November 11, 2020. An SDS was added to the sample package.

#### 2.5 STABILITY OF THE SAMPLES

The stability of Ethanol (Bio / Fuel grade) packed in amber glass bottles and PE bottles was checked. The material was found sufficiently stable for the period of the proficiency test.

#### 2.6 ANALYZES

The participants were requested to determine on sample #20245: Total Acidity as Acetic Acid, Appearance, Copper as Cu, Density at 20°C, Electrical Conductivity at 25°C, Nonvolatile matter, Nitrogen, pHe (LiCl and KCl), Phosphorus as P, Water (Coulometric and Volumetric), Ethanol incl. higher alcohols (acc. EN15721), Higher alcohols (acc. EN15721), Impurities (acc. EN15721), Methanol, Ethanol by mass and by volume (acc. ASTM D5501), Bitrex and Gum (solvent washed).

On sample #20246 it was requested to determine Inorganic Chloride as CI, Sulfate as SO<sub>4</sub> and Sulfur.

On sample #20249 it was requested to determine Nonvolatile matter.

It was explicitly requested to treat the samples as if they were routine samples and to report the test results using the indicated units on the report form and not to round the test results, but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the reference test methods (when applicable) that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

## 3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis/. The reported test results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyzes). Additional or corrected test results are used for data analysis and the original test results are placed under 'Remarks' in the result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

## 3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care.

The assigned value is determined by consensus based on the test results of the group of participants after rejection of the statistical outliers and/or suspect data.

According to ISO13528 all (original received or corrected) results per determination were submitted to outlier tests. In the iis procedure for proficiency tests, outliers are detected prior to calculation of the mean, standard deviation and reproducibility. For small data sets, Dixon (up to 20 test results) or Grubbs (up to 40 test results) outlier tests can be used. For larger data sets (above 20 test results) Rosner's outlier test can be used. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test, by G(0.05) or DG(0.05) for the Grubbs' test and by R(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT, the criterion of ISO13528, paragraph 9.2.1. was met for all evaluated tests, therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

#### 3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve (dotted line) was projected over the Kernel Density Graph (smooth line) for reference.

#### 3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ISO reproducibilities, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study.

The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used, like Horwitz or an estimated reproducibility based on former iis proficiency tests.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

```
z_{\text{(target)}} = \text{(test result - average of PT)} / \text{target standard deviation}
```

The  $z_{(target)}$  scores are listed in the test result tables in appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. Therefore, the usual interpretation of z-scores is as follows:

```
|z| < 1 good
1 < |z| < 2 satisfactory
2 < |z| < 3 questionable
3 < |z| unsatisfactory
```

#### 4 **EVALUATION**

Some problems were encountered with the dispatch of the samples due to the COVID-19 pandemic. Therefore, the reporting time on the data entry portal was extended with another three weeks. When considering the test results of the three samples together one participant reported test results after the final reporting date and ten participants did not report any test results. Not all participants were able to report all tests requested.

In total 49 participants reported 507 numerical test results. Observed were 18 outlying test results, which is 3.6%. In proficiency tests outlier percentages of 3% - 7.5% are quite normal.

Not all data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

#### 4.1 EVALUATION PER SAMPLE AND PER TEST

In this section the reported test results are discussed per sample and per test. The test methods which were used by the various laboratories were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the original data. The abbreviations, used in these tables, are explained in appendix 3.

Unfortunately, a suitable reference test method, providing the precision data, is not available for all determinations. For these tests the calculated reproducibility was compared against the estimated reproducibility calculated with the Horwitz equation.

In the iis PT reports ASTM test methods are referred to with a number (e.g. D5501) and an added designation for the year that the test method was adopted or revised (e.g. D5501:20).

### Sample #20245

<u>Total Acidity</u>: This determination was not problematic. No statistical outliers were

observed. The calculated reproducibility is in agreement with the

requirements of EN15491:07 and ASTM D1613:17

Appearance: This determination was not problematic. All reporting participants agreed

about the appearance as Pass (Clear and Bright).

Copper as Cu: Almost all of the participants reported a test result near or below the

application range of the method EN15488:07. Therefore, no z-scores were

calculated.

<u>Density at 20°C</u>: This determination was not problematic. Two statistical outliers were

observed. The calculated reproducibility after rejection of the statistical

outliers is in agreement with the requirements of ISO12185:96.

Electrical Conductivity at 25°C: This determination was very problematic. One statistical

outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not at all in agreement with the requirements of

EN15938:10.

Nonvolatile matter: This determination was not problematic. All participants reported a test

result near or below the application range of the method EN15691:09.

Therefore, no z-scores were calculated.

Nitrogen: This determination was problematic. No statistical outliers were observed.

The calculated reproducibility is not in agreement with the requirements of

ASTM D4629:17.

pHe: It is known that the pHe determined with a LiCl electrode will be lower than

the pHe determined with a KCl electrode. Two test methods are available for the determination of the pHe of Ethanol: EN15490, that describes the use of a LiCl electrode and ASTM D6423, that describes the use of a KCl

electrode.

pHe (LiCl): This determination may be problematic. Only 5 participants reported a test

result. Due to the large variation in the test results it was decided not to

calculate z-scores.

<u>pHe (KCI)</u>: This determination was not problematic. No statistical outliers were

observed. The calculated reproducibility is in full agreement with the

requirements of D6423:20a.

<u>Phosphorus as P</u>: This determination was not problematic. Almost all of the participants

reported a test result near or below the application range of the method

EN15487:07. Therefore, no z-scores were calculated.

Water, Coulometric: This determination was not problematic. Four statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in full agreement with the requirements of EN15489:07, ASTM E1064:16 and ASTM D6304:16e1.

<u>Water, Volumetric</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM E203:16 and EN15692:09.

### GC general:

The test results reported for the Ethanol content is depending on the test method used by the laboratory. Test method EN15721 uses a different definition for Ethanol than ASTM D5501. Therefore, the participants in this proficiency test were requested to report the Ethanol content for each of the two definitions.

Ethanol (EN15721): In EN15721 the purity (the Ethanol content) is defined as:

Ethanol (incl. higher alcohols) = 100% - impurity% - methanol%, where the higher alcohols consequently are <u>not</u> included in "impurity%" but in Ethanol content.

This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in full agreement with the requirements of EN15721:13.

Higher alcohols (EN15721): In EN15721 the higher alcohol content is defined as: the sum of n-propanol%, n-butanol%, sec-butanol%, isopropanol%, 2-methyl-1-butanol% and 3-methyl-1-butanol%.

This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in full agreement with the requirements of EN15721:13.

Impurities (EN15721): In EN15721 the impurity content is defined as: content of all components except for Ethanol%, Methanol% and the higher alcohols%. This determination was problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the estimated reproducibility using the Horwitz equation based on nine components.

## Methanol:

This determination may be problematic depending on the test method used. Five statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the estimated reproducibility using the Horwitz equation, but is in agreement with the requirements of ASTM D5501:20. A negative value for the reproducibility is found at this concentration level for test method EN15721:13 which is theoretically not correct.

Ethanol (D5501): This determination was not problematic for Ethanol by mass and Ethanol

by volume. No statistical outliers were observed but in total eight test results were excluded. For both Ethanol by mass and Ethanol by volume the calculated reproducibility after rejection of the suspect data is in agreement with the requirements of ASTM D5501:20.

Bitrex: This determination may be problematic. Only 5 participants reported a test

result. Due to the large variation in the test results it was decided not to

calculate z-scores.

<u>Gum (solvent washed):</u> This determination was not problematic. Almost all of the participants

agreed on a test result <1 mg/100mL. Therefore, no z-scores were

calculated.

### Sample #20246

Inorganic Chloride: This determination was problematic. No statistical outliers were observed.

The calculated reproducibility is not in agreement with the requirements of

ASTM D7319:17 or EN15492:12.

Sulfate as SO<sub>4</sub>: This determination may be problematic depending on the test method used.

No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM D7319:17, but is not in

agreement with the requirements of EN15492:12 or ASTM D7328:17.

Sulfur: This determination was not problematic. One statistical outlier was

observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of EN15485:07, EN15486:07

and ASTM D5453:19a.

### Sample #20249

Nonvolatile matter: This determination was not problematic. Three statistical outliers were

observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of EN15691:09 and ASTM

D1353:13.

#### 4.2 Performance evaluation for the group of Laboratories

A comparison has been made between the reproducibility as declared by the reference test method or as declared by the estimated target reproducibility calculated with the Horwitz equation and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average, the calculated reproducibility (2.8 \* standard deviation) and the target reproducibility derived from literature reference test methods (in casu ASTM, EN and ISO test methods) or estimated using the Horwitz equation are presented in the next tables.

| Parameter                           | unit     | n  | average | 2.8 * sd | R(lit) |
|-------------------------------------|----------|----|---------|----------|--------|
| Total Acidity as Acetic Acid        | mg/kg    | 37 | 16.5    | 10.4     | 13.7   |
| Appearance                          |          | 41 | Pass    | n.a.     | n.a.   |
| Copper as Cu                        | mg/kg    | 21 | <0.07   | n.e.     | n.e.   |
| Density at 20°C                     | kg/L     | 44 | 0.7898  | 0.0002   | 0.0005 |
| Electrical Conductivity at 25°C     | μS/cm    | 29 | 1.18    | 0.42     | 0.21   |
| Nonvolatile matter                  | mg/100mL | 28 | <10     | n.e.     | n.e.   |
| Nitrogen                            | mg/kg    | 16 | 1.69    | 1.39     | 1.06   |
| pHe (LiCl)                          |          | 5  | 6.99    | 2.02     | (0.67) |
| pHe (KCI)                           |          | 15 | 7.25    | 1.09     | 1.08   |
| Phosphorus as P                     | mg/L     | 18 | <0.15   | n.e.     | n.e.   |
| Water, Coulometric                  | %M/M     | 38 | 0.127   | 0.021    | 0.021  |
| Water, Volumetric                   | %M/M     | 25 | 0.121   | 0.020    | 0.078  |
| Ethanol + higher alcohols (EN15721) | %M/M     | 30 | 99.924  | 0.048    | 0.045  |
| Higher alcohols (EN15721)           | %M/M     | 29 | 0.125   | 0.033    | 0.034  |
| Impurities (EN15721)                | %M/M     | 24 | 0.070   | 0.040    | 0.035  |
| Methanol                            | %M/M     | 26 | 0.005   | 0.0018   | 0.0013 |
| Ethanol (D5501)                     | %M/M     | 12 | 99.733  | 0.228    | 0.993  |
| Ethanol (D5501)                     | %V/V     | 13 | 99.787  | 0.258    | 0.992  |
| Bitrex                              | mg/kg    | 5  | <50     | n.e.     | n.e.   |
| Gum (solvent washed)                | mg/100mL | 13 | <1      | n.e.     | n.e.   |

Table 7: reproducibilities of tests on sample #20245

Results between brackets should be used with due care

| Parameter                  | unit     | n  | average | 2.8 * sd | R(lit) |
|----------------------------|----------|----|---------|----------|--------|
| Inorganic Chloride as Cl   | mg/kg    | 24 | 1.9     | 0.9      | 0.6    |
| Sulfate as SO <sub>4</sub> | mg/kg    | 21 | 1.1     | 1.3      | 1.5    |
| Sulfur                     | mg/kg    | 23 | 1.2     | 0.6      | 3.3    |
| Nonvolatile matter         | mg/100mL | 28 | 33.5    | 5.7      | 6.2    |

Table 8: reproducibilities of tests on sample #20246 and sample #20249

Without further statistical calculations, it can be concluded that for many tests there is a good compliance of the group of participants with the reference test methods. The problematic tests have been discussed in paragraph 4.1.

## 4.3 COMPARISON OF THE PROFICIENCY TEST OF DECEMBER 2020 WITH PREVIOUS PTS

|                                    | December<br>2020 | November<br>2019 | December<br>2018 | December<br>2017 | December<br>2016 |
|------------------------------------|------------------|------------------|------------------|------------------|------------------|
| Number of reporting laboratories   | 49               | 51               | 53               | 59               | 57               |
| Number of test results             | 507              | 457              | 473              | 537              | 476              |
| Number of statistical outliers     | 18               | 16               | 14               | 22               | 31               |
| Percentage of statistical outliers | 3.6%             | 3.5%             | 3.0%             | 4.1%             | 6.5%             |

Table 9: comparison with previous proficiency tests

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared to the requirements of the reference test methods. The conclusions are given in the following table.

| Parameter                           | December<br>2020 | November 2019 | December<br>2018 | December<br>2017 | December<br>2016 |
|-------------------------------------|------------------|---------------|------------------|------------------|------------------|
| Acidity, Total as Acetic Acid       | ++               | +             | +                | -                | +                |
| Density at 20°C                     | ++               | ++            | ++               | ++               | ++               |
| Electrical Conductivity at 25°C     |                  | -             |                  |                  |                  |
| Nonvolatile matter                  | n.e./ +          | n.e.          | ()               | ()               | ()               |
| Nitrogen                            | -                | -             | -                | -                |                  |
| рНе                                 | +/-              | +/-           | -                | -                | +/-              |
| Water, Coulometric                  | +/-              | -             | +/-              | +/-              | +                |
| Water, Volumetric                   | +                | +             | +                | ++               | ++               |
| Ethanol + higher alcohols (EN15721) | +/-              | ++            |                  | -                | -                |
| Higher alcohols (EN15721)           | +/-              | +             | +/-              | +/-              | -                |
| Impurities (EN15721)                | -                | ++            | -                | -                |                  |
| Methanol                            | -                |               |                  | -                | -                |
| Ethanol (D5501)                     | ++               | ++            | +                | +                | ++               |
| Inorganic Chloride as Cl            | -                | -             | -                | +                | (++)             |
| Sulfate as SO <sub>4</sub>          | +                | -             | -                |                  |                  |
| Sulfur                              | ++               | ++            | +                | +                | +                |

Table 9: comparison determinations against the reference test methods

Results between brackets should be used with care, because the average was near or below the application range.

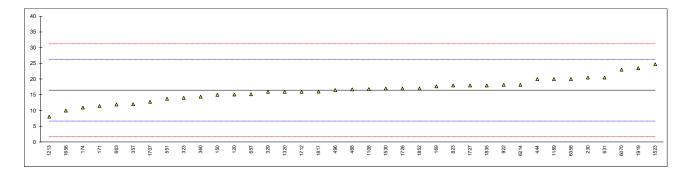
## The following performance categories were used:

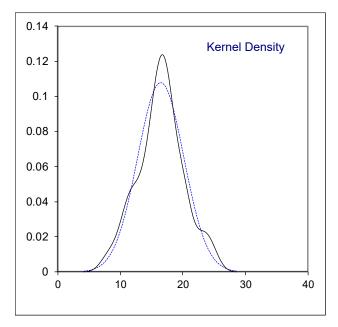
++ : group performed much better than the reference test method

+ : group performed better than the reference test method

+/- : group performance equals the reference test method

- : group performed worse than the reference test method


-- : group performed much worse than the reference test method


n.e. : not evaluated

**APPENDIX 1** 

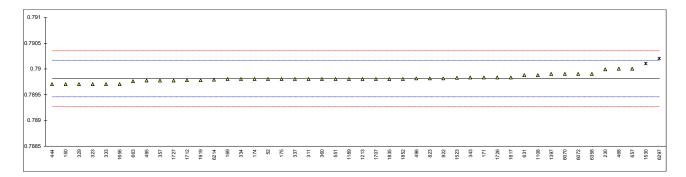
Determination of Total Acidity as Acetic Acid on sample #20245; results in mg/kg

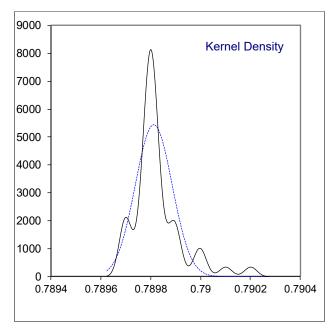
|              |                     | · · · · · · · · · · · · · · · · · · · | •    | •             | sample #20245; results in mg/kg                     |
|--------------|---------------------|---------------------------------------|------|---------------|-----------------------------------------------------|
| lab<br>52    | method<br>EN15401   | <30                                   | mark | z(targ)       | remarks                                             |
| 52<br>120    | EN15491<br>D1613    | <30<br>15.1                           |      | -0.28         |                                                     |
| 150          | D1613               | 15.1                                  |      | -0.20         |                                                     |
| 169          | D7795               | 17.7                                  |      | 0.25          |                                                     |
| 171          | D1613               | 11.4                                  |      | -1.04         |                                                     |
| 174          | D1613               | 11                                    |      | -1.12         |                                                     |
| 175          |                     |                                       |      |               |                                                     |
| 230          | D1613               | 20.5                                  |      | 0.82          |                                                     |
| 311          | EN15491             | <30                                   |      |               |                                                     |
| 323          | EN15491             | 14                                    |      | -0.51         |                                                     |
| 329          | EN15491             | 16                                    |      | -0.10         |                                                     |
| 333<br>334   | EN15491<br>EN15491  | <30<br><30                            |      |               |                                                     |
| 337          | LIVIOTOI            |                                       |      |               |                                                     |
| 343          | EN15491             | <30                                   |      |               |                                                     |
| 357          | EN15491             | 12                                    |      | -0.92         |                                                     |
| 360          | EN15491             | 14.4                                  |      | -0.43         |                                                     |
| 396          |                     |                                       |      |               |                                                     |
| 444          | EN15491             | 20                                    |      | 0.72          |                                                     |
| 468          | EN15491             | 16.7                                  |      | 0.04          |                                                     |
| 495<br>496   | EN15401             | <br>16.5                              |      | 0.00          |                                                     |
| 496<br>511   | EN15491             | 10.5                                  |      | 0.00          |                                                     |
| 541          |                     |                                       |      |               |                                                     |
| 551          | D1613               | 13.7                                  |      | -0.57         |                                                     |
| 554          |                     |                                       |      |               |                                                     |
| 558          |                     |                                       |      |               |                                                     |
| 621          |                     |                                       |      |               |                                                     |
| 631          | D1613               | 20.5                                  |      | 0.82          |                                                     |
| 633          |                     |                                       |      |               |                                                     |
| 634<br>657   | D1613               | 15.2203                               |      | -0.26         |                                                     |
| 663          | D1613               | 11.9                                  | С    | -0.20         | first reported 0.00119 mg/kg                        |
| 823          | D1613               | 18                                    | Ü    | 0.31          | mot reported 0.00 Fro mg/kg                         |
| 913          |                     |                                       |      |               |                                                     |
| 922          | D1613               | 18.2                                  |      | 0.35          |                                                     |
| 1108         | EN15491             | 16.776                                |      | 0.06          |                                                     |
| 1189         | EN15491             | 20                                    |      | 0.72          |                                                     |
| 1213         | D1613               | 8.1                                   |      | -1.71         |                                                     |
| 1320<br>1397 | ISO17315            | 16<br>                                |      | -0.10<br>     |                                                     |
| 1438         |                     |                                       |      |               |                                                     |
| 1523         | D1388               | 24.743                                |      | 1.69          |                                                     |
| 1530         | EN15491             | 17                                    |      | 0.10          |                                                     |
| 1656         | EN15491             | 10                                    |      | -1.33         |                                                     |
| 1707         | D1613               | 12.8                                  |      | -0.75         |                                                     |
| 1712         | EN15491             | 16                                    |      | -0.10         |                                                     |
| 1726         | EN15491             | 17                                    |      | 0.10          |                                                     |
| 1727         | EN15491             | 18                                    |      | 0.31          |                                                     |
| 1817<br>1835 | ISO1388<br>EN15491  | 16.08<br>18                           |      | -0.08<br>0.31 |                                                     |
| 1852         | EN15491<br>EN15491  | 17                                    |      | 0.31          |                                                     |
| 1919         | EN15491             | 23.5                                  |      | 1.43          |                                                     |
| 6070         | D1613               | 23.3                                  |      | 1.33          |                                                     |
| 6072         |                     |                                       |      |               |                                                     |
| 6214         | EN15491             | 18.2                                  |      | 0.35          |                                                     |
| 6297         |                     |                                       |      |               |                                                     |
| 6341         | EN45404             |                                       |      | 0.70          |                                                     |
| 6358         | EN15491             | 20                                    |      | 0.72          |                                                     |
|              | normality           | OK                                    |      |               |                                                     |
|              | n                   | 37                                    |      |               |                                                     |
|              | outliers            | 0                                     |      |               |                                                     |
|              | mean (n)            | 16.487                                |      |               |                                                     |
|              | st.dev. (n)         | 3.6977                                |      |               |                                                     |
|              | R(calc.)            | 10.353                                |      |               |                                                     |
|              | st.dev.(EN15491:07) | 4.8929                                |      |               | 1. 1. 00 450 11                                     |
|              | R(EN15491:07)       | 13.7                                  |      |               | application range: 30 – 150 mg/kg                   |
|              | compare             |                                       |      |               | application range: <500 mg/kg                       |
|              | R(D1613:17)         | 14                                    |      |               | application range. <p(1) kg<="" mg="" td=""></p(1)> |





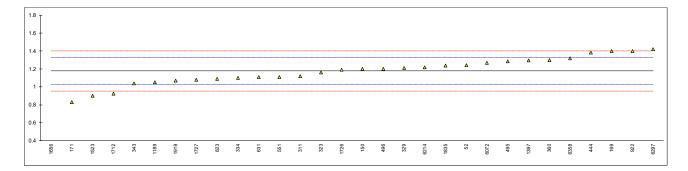
## Determination of Appearance on sample #20245;

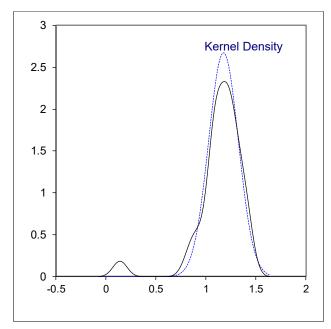

| lah          | mothod            | value                   | mort | =/to==) | romorko |
|--------------|-------------------|-------------------------|------|---------|---------|
| lab          | method            | Value                   | mark | z(targ) | remarks |
| 52<br>120    | EN15769           | Clear & Coloured        |      |         |         |
| 120          | D4176             | C&B                     |      |         |         |
| 150<br>169   | E2680<br>Visual   | Pass<br>CBFSM           |      |         |         |
| 171          | Visual            | CFSM                    |      |         |         |
| 174          | Visual            | Clear & Free            |      | <b></b> |         |
| 175          | D4176             | Pass                    |      |         |         |
| 230          | Visual            | C&B                     |      |         |         |
| 311          | EN15769           | clear & colourless      |      |         |         |
| 323          | D4176             | c&b                     |      |         |         |
| 329          | Visual            | clear                   |      |         |         |
| 333          | Visual            | Clear and bright        |      |         |         |
| 334          | EN15769           | clear and bright FFSM   |      |         |         |
| 337          | Visual            | colourless              |      |         |         |
| 343          | Visual            | clear & bright          |      |         |         |
| 357          | E2680             | Pass                    |      |         |         |
| 360          | EN15769           | Clear and Colourless    |      |         |         |
| 396          |                   |                         |      |         |         |
| 444          | EN15769           | Pass                    |      |         |         |
| 468          | EN15769           | C&C                     |      |         |         |
| 495          | EN15769           | Clear and colourless    |      |         |         |
| 496          | Visual            | clear&bright            |      |         |         |
| 511          |                   |                         |      |         |         |
| 541          |                   |                         |      |         |         |
| 551          | E2680             | Pass                    |      |         |         |
| 554          |                   |                         |      |         |         |
| 558          |                   |                         |      |         |         |
| 621          |                   |                         |      |         |         |
| 631          | Visual            | clear & bright          |      |         |         |
| 633          |                   |                         |      |         |         |
| 634          |                   |                         |      |         |         |
| 657          | E2680             | Pass                    |      |         |         |
| 663          | Visual            | Bright & Clear          |      |         |         |
| 823          | E2680             | Pass                    |      |         |         |
| 913          |                   |                         |      |         |         |
| 922          | Visual            | Clear and bright        |      |         |         |
| 1108         | N.C I             |                         |      |         |         |
| 1189         | Visual            | C/B                     |      |         |         |
| 1213         |                   |                         |      |         |         |
| 1320         | EN16360           |                         |      |         |         |
| 1397         | EN15769           | colourless, bright      |      |         |         |
| 1438<br>1523 |                   |                         |      |         |         |
| 1523         | Vioual            |                         |      |         |         |
| 1656         | Visual<br>EN15769 | bright and clear pass   |      |         |         |
| 1707         | Visual            | C&B                     |      |         |         |
| 1712         | EN15769           | C&B                     |      |         |         |
| 1712         | EN15769           | Clear&Colorless         |      |         |         |
| 1727         | Visual            | Clear&Colorless         |      |         |         |
| 1817         | Visual            | PASS                    |      |         |         |
| 1835         | EN15769           | C&C                     |      |         |         |
| 1852         | Visual            | clear & bright          |      |         |         |
| 1919         | = =:=::           |                         |      |         |         |
| 6070         | Visual            | Clear and Free          |      |         |         |
| 6072         |                   |                         |      |         |         |
| 6214         | EN15769           | Clear and colourless    |      |         |         |
| 6297         |                   |                         |      |         |         |
| 6341         |                   |                         |      |         |         |
| 6358         | EN15769           | clear and colourless    |      |         |         |
|              |                   |                         |      |         |         |
|              | n                 | 41                      |      |         |         |
|              | mean              | Pass (Clear and Bright) |      |         |         |
|              |                   |                         |      |         |         |


# Determination of Copper as Cu on sample #20245; results in mg/kg

| lab          | method                  | value        | mark z(targ)                  | remarks |
|--------------|-------------------------|--------------|-------------------------------|---------|
| 52           | EN15837                 | <0.050       | mark Z(targ)                  |         |
| 120          | LIN 10001               |              |                               |         |
| 150          | D1688                   | <0.1         |                               |         |
| 169          | D1688                   | <0.05        |                               |         |
| 171          | 2.000                   |              |                               |         |
| 174          |                         |              |                               |         |
| 175          | D1688                   | < 0.05       |                               |         |
| 230          |                         |              |                               |         |
| 311          | EN15837                 | < 0.050      |                               |         |
| 323          | EN15488                 | < 0.070      |                               |         |
| 329          | EN15488                 | 0.002        |                               |         |
| 333          | EN15488                 | <0.07        |                               |         |
| 334          |                         |              |                               |         |
| 337          |                         |              |                               |         |
| 343          | EN15837                 | <0,050       |                               |         |
| 357          |                         |              |                               |         |
| 360          | EN15837                 | < 0.050      |                               |         |
| 396          |                         |              |                               |         |
| 444          | EN15837                 | 0.002        |                               |         |
| 468          | EN15488                 | <0,07        |                               |         |
| 495          |                         |              |                               |         |
| 496          |                         |              |                               |         |
| 511          |                         |              |                               |         |
| 541          | INII I 00 47            |              |                               |         |
| 551          | INH-2047                | <0.04        |                               |         |
| 554<br>558   |                         |              |                               |         |
| 621          |                         |              |                               |         |
| 631          | D1688                   | <0.05        |                               |         |
| 633          | D 1000                  | -0.00        |                               |         |
| 634          |                         |              |                               |         |
| 657          |                         |              |                               |         |
| 663          | In house                | 0.0001       |                               |         |
| 823          | UOP389                  | < 0.01       |                               |         |
| 913          |                         |              |                               |         |
| 922          | D1688                   | <0.05        |                               |         |
| 1108         |                         |              |                               |         |
| 1189         |                         |              |                               |         |
| 1213         |                         |              |                               |         |
| 1320         |                         |              |                               |         |
| 1397         |                         |              |                               |         |
| 1438         |                         |              |                               |         |
| 1523         |                         |              |                               |         |
| 1530         | D4600 A                 |              |                               |         |
| 1656<br>1707 | D1688-A                 | <0.1         |                               |         |
| 1707<br>1712 | EN15488                 | <br><0.07    |                               |         |
| 1712<br>1726 | LIN 1 3400              | <0,07        |                               |         |
| 1720         |                         |              |                               |         |
| 1817         |                         |              |                               |         |
| 1835         | EN15837                 | <0.050       |                               |         |
| 1852         |                         |              |                               |         |
| 1919         |                         |              |                               |         |
| 6070         | D1688                   | 0.025        |                               |         |
| 6072         |                         |              |                               |         |
| 6214         | EN15488                 | 0.0013       |                               |         |
| 6297         |                         |              |                               |         |
| 6341         |                         |              |                               |         |
| 6358         | EN15488                 | <0,070       |                               |         |
|              |                         |              |                               |         |
|              | n                       | 21           |                               |         |
|              | mean (n)                | <0.07        |                               |         |
|              | application range of te | est method E | N15488:07: 0.07 <b>-</b> 0.20 | )mg/kg  |

# Determination of Density at 20°C on sample #20245; results in kg/L


| lab          | method               | value             | mark        | z(targ)        | remarks                   |
|--------------|----------------------|-------------------|-------------|----------------|---------------------------|
| 52           | ISO12185             | 0.7898            | HUIK        | -0.07          | TOTHATING                 |
| 120          | 13012103             | 0.7090            |             | -0.07          |                           |
| 150          | D4052                | 0.7897            |             | -0.63          |                           |
| 169          | D4052                | 0.7898            |             | -0.07          |                           |
| 171          | D4052                | 0.78983           |             | 0.10           |                           |
| 174          | D4052                | 0.7898            |             | -0.07          |                           |
| 175          | D4052                | 0.7898            |             | -0.07          |                           |
| 230          | D4052                | 0.78999           |             | 0.99           |                           |
| 311          | D4052                | 0.7898            |             | -0.07          |                           |
| 323          | D4052                | 0.7897            |             | -0.63          |                           |
| 329          | D4052                | 0.7897            |             | -0.63          |                           |
| 333          | ISO12185             | 0.7897            |             | -0.63          |                           |
| 334          | ISO12185             | 0.7898            |             | -0.07          |                           |
| 337          | ISO12185             | 0.7898            |             | -0.07          |                           |
| 343          | ISO12185             | 0.78983           | С           | 0.10           | first reported 0.7904     |
| 357          | D4052                | 0.78977           |             | -0.24          |                           |
| 360          | ISO12185             | 0.7898            |             | -0.07          |                           |
| 396          | D. 40-50             |                   |             |                |                           |
| 444          | D4052                | 0.7897            |             | -0.63          |                           |
| 468          | ISO12185             | 0.7900            |             | 1.05           |                           |
| 495          | ISO12185             | 0.78977           |             | -0.24          |                           |
| 496          | ISO12185             | 0.78981           |             | -0.01          |                           |
| 511          |                      |                   |             |                |                           |
| 541<br>551   | D4052                | 0.7898            |             | -0.07          |                           |
| 554          | D4032                | 0.7696            |             | -0.07          |                           |
| 558          |                      |                   |             |                |                           |
| 621          |                      |                   |             |                |                           |
| 631          | D4052                | 0.78988           |             | 0.38           |                           |
| 633          | D-1032               |                   |             |                |                           |
| 634          |                      |                   |             |                |                           |
| 657          | D4052                | 0.7900            |             | 1.05           |                           |
| 663          | D4052                | 0.78976           |             | -0.29          |                           |
| 823          | ISO12185             | 0.78981           |             | -0.01          |                           |
| 913          |                      |                   |             |                |                           |
| 922          | D4052                | 0.78981           |             | -0.01          |                           |
| 1108         | D4052                | 0.78988           |             | 0.38           |                           |
| 1189         | D4052                | 0.7898            |             | -0.07          |                           |
| 1213         | D4052                | 0.7898            |             | -0.07          |                           |
| 1320         |                      |                   |             |                |                           |
| 1397         | ISO12185             | 0.7899            | С           | 0.49           | first reported 789.9 kg/L |
| 1438         |                      |                   |             |                |                           |
| 1523         | D4052                | 0.7898245         |             | 0.07           |                           |
| 1530         | ISO12185             | 0.79010           | R(0.05)     | 1.61           |                           |
| 1656         | D4052                | 0.7897            |             | -0.63          |                           |
| 1707         | D4052                | 0.7898            |             | -0.07          |                           |
| 1712         | ISO12185             | 0.78978           |             | -0.18          |                           |
| 1726         | D4052                | 0.78983           |             | 0.10           |                           |
| 1727         | D4052                | 0.78977           |             | -0.24          |                           |
| 1817<br>1835 | Table OIML           | 0.78983           |             | 0.10           |                           |
| 1835<br>1852 | ISO12185<br>ISO12185 | 0.78980<br>0.7898 |             | -0.07<br>-0.07 |                           |
| 1919         | ISO12185             | 0.78978           |             | -0.07<br>-0.18 |                           |
| 6070         | D4052                | 0.7899            |             | 0.18           |                           |
| 6072         | D4052<br>D4052       | 0.7899            | С           | 0.49           | first reported 789.9 kg/L |
| 6214         | ISO12185             | 0.78979           | 5           | -0.13          | mot reported 7 00.0 kg/L  |
| 6297         | D4052                | 0.7902            | C,R(0.01)   | 2.17           | reported 790.2 kg/L       |
| 6341         | _ 100_               | 0.7902            | S,  ((0.01) |                | . 5p3.15d 1 00.E Ng/E     |
| 6358         | ISO12185             | 0.7899            |             | 0.49           |                           |
|              | <del></del>          | <b>-</b>          |             | 2              |                           |
|              | normality            | suspect           |             |                |                           |
|              | n                    | 44                |             |                |                           |
|              | outliers             | 2                 |             |                |                           |
|              | mean (n)             | 0.78981           |             |                |                           |
|              | st.dev. (n)          | 0.000073          |             |                |                           |
|              | R(calc.)             | 0.00021           |             |                |                           |
|              | st.dev.(ISO12185:96) | 0.000179          |             |                |                           |
|              | R(ISO12185:96)       | 0.0005            |             |                |                           |

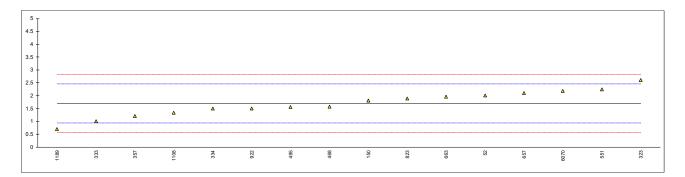


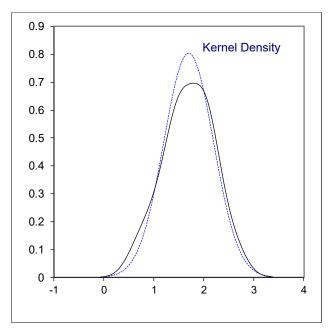



# Determination of Electrical Conductivity at 25°C on sample #20245; results in $\mu\text{S/cm}$

| lab          | method                          | value           | mark      | z(targ)       | remarks                                    |
|--------------|---------------------------------|-----------------|-----------|---------------|--------------------------------------------|
| 52           | EN15938                         | 1.24            |           | 0.83          |                                            |
| 120          |                                 |                 |           |               |                                            |
| 150          | EN15938                         | 1.2             |           | 0.30          |                                            |
| 169          | NBR10547                        | 1.40            | C         | 2.98          | reported 140 μS/cm, possibly a unit error? |
| 171          | EN15938                         | 0.83            | С         | -4.67         | reported 83 μS/cm, possibly a unit error?  |
| 174          | D1125                           | <10             |           |               |                                            |
| 175<br>230   |                                 |                 |           |               |                                            |
| 311          | EN15938                         | 1.12            |           | -0.78         |                                            |
| 323          | EN15938                         | 1.16            |           | -0.76         |                                            |
| 329          | EN15938                         | 1.21            |           | 0.43          |                                            |
| 333          |                                 |                 |           |               |                                            |
| 334          | EN15938                         | 1.10            |           | -1.04         |                                            |
| 337          |                                 |                 |           |               |                                            |
| 343          | EN15938                         | 1.04            | С         | -1.85         | first reported 0.72                        |
| 357          | EN4E020                         | 1.2             | 0         | 1.64          | first reported 0.7                         |
| 360<br>396   | EN15938                         | 1.3             | С         | 1.64          | first reported 0.7                         |
| 444          | EN15938                         | 1.384           |           | 2.76          |                                            |
| 468          | 21110000                        |                 |           |               |                                            |
| 495          | EN15938                         | 1.286           |           | 1.45          |                                            |
| 496          | EN15938                         | 1.2             |           | 0.30          |                                            |
| 511          |                                 |                 |           |               |                                            |
| 541          |                                 |                 |           |               |                                            |
| 551          | NBR10547                        | 1.11            |           | -0.91         |                                            |
| 554          |                                 |                 |           |               |                                            |
| 558<br>621   |                                 |                 |           |               |                                            |
| 631          | D1125                           | 1.11            | С         | -0.91         | first reported 111                         |
| 633          | D1120                           |                 | O         | -0.51         | macreported 111                            |
| 634          |                                 |                 |           |               |                                            |
| 657          |                                 |                 |           |               |                                            |
| 663          |                                 |                 |           |               |                                            |
| 823          | D1125                           | 1.090           |           | -1.18         |                                            |
| 913          | DE204                           | 4.40            | 0         | 2.00          | first new autod 0.40                       |
| 922<br>1108  | D5391                           | 1.40<br>        | С         | 2.98          | first reported 0.46                        |
| 1189         | EN15938                         | 1.053           |           | -1.67         |                                            |
| 1213         | LIV 13930                       |                 |           | -1.07         |                                            |
| 1320         |                                 |                 |           |               |                                            |
| 1397         | EN2788                          | 1.296           |           | 1.58          |                                            |
| 1438         |                                 |                 |           |               |                                            |
| 1523         | D2624                           | 0.90            |           | -3.73         |                                            |
| 1530         | EN45000                         |                 | 0.0(0.04) |               |                                            |
| 1656<br>1707 | EN15938                         | 0.14            | C,R(0.01) | -13.92        | first reported <1                          |
| 1707<br>1712 | EN15938                         | 0.926           |           | -3.38         |                                            |
| 1712         | EN15936<br>EN15938              | 1.19            |           | -3.36<br>0.16 |                                            |
| 1727         | EN15938                         | 1.08            |           | -1.31         |                                            |
| 1817         | 2.11.0000                       |                 |           |               |                                            |
| 1835         | EN15938                         | 1.238           |           | 0.81          |                                            |
| 1852         |                                 |                 |           |               |                                            |
| 1919         | EN15938                         | 1.07            |           | -1.45         |                                            |
| 6070         | NDD 40547                       | 4.000           |           |               |                                            |
| 6072         | NBR10547                        | 1.268           |           | 1.21          |                                            |
| 6214<br>6297 | EN15938<br>NBR10547             | 1.218<br>1.42   |           | 0.54<br>3.25  | reported 142 μS/m                          |
| 6341         | NDIX 10347                      | 1.42            |           | 3.23          | Teported 142 μο/ΠΙ                         |
| 6358         | EN15938                         | 1.319           |           | 1.89          |                                            |
|              |                                 |                 |           |               |                                            |
|              | normality                       | OK              |           |               |                                            |
|              | n                               | 29              |           |               |                                            |
|              | outliers                        | 1               |           |               |                                            |
|              | mean (n)                        | 1.178           |           |               |                                            |
|              | st.dev. (n)                     | 0.1493          |           |               |                                            |
|              | R(calc.)<br>st.dev.(EN15938:10) | 0.418           |           |               |                                            |
|              | R(EN15938:10)                   | 0.0746<br>0.209 |           |               |                                            |
|              | 11(LIN 10000.10)                | 0.203           |           |               |                                            |





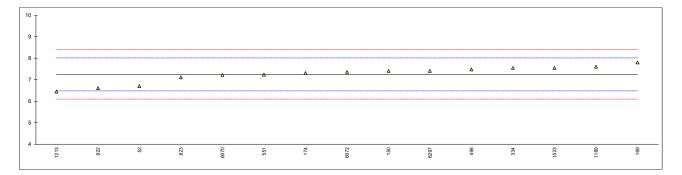


## Determination of Nonvolatile matter on sample #20245; results in mg/100mL

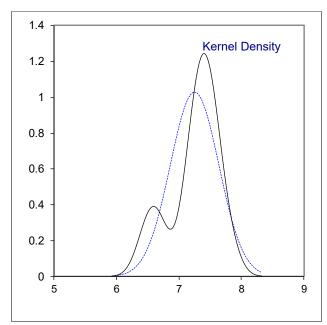
| lab          | method            | value     | mark z(targ)          | remarks |
|--------------|-------------------|-----------|-----------------------|---------|
| 52           | EN15691           | <10       |                       |         |
| 120          |                   |           |                       |         |
| 150          | D1353             | 1.4       |                       |         |
| 169          | D1353             | 0.00      |                       |         |
| 171<br>174   | D1353             | 3<br>0.6  |                       |         |
| 174          | D1353             | 0.0       |                       |         |
| 230          | D1353             | 2.7       |                       |         |
| 311          | EN15691           | <10       |                       |         |
| 323          | EN15691           | 1.9       |                       |         |
| 329          | EN15691           | 1.4       |                       |         |
| 333          |                   |           |                       |         |
| 334          |                   |           |                       |         |
| 337<br>343   | EN15691           | <10       |                       |         |
| 357          | EN15691           | 1         |                       |         |
| 360          | EN15691           | 1.1       |                       |         |
| 396          |                   |           |                       |         |
| 444          | EN15691           | 0         |                       |         |
| 468          | EN15691           | <1,0      |                       |         |
| 495          | EN15601           |           |                       |         |
| 496<br>511   | EN15691           | <3.5<br>  |                       |         |
| 541          |                   |           |                       |         |
| 551          | D1353             | 0.5       |                       |         |
| 554          |                   |           |                       |         |
| 558          |                   |           |                       |         |
| 621          |                   |           |                       |         |
| 631          |                   |           |                       |         |
| 633<br>634   |                   |           |                       |         |
| 657          | D1353             | 1.2       |                       |         |
| 663          |                   |           |                       |         |
| 823          | D1353             | 0.4       |                       |         |
| 913          |                   |           |                       |         |
| 922          | D1353             | 1.0       |                       |         |
| 1108<br>1189 | EN15691           | 1.8       |                       |         |
| 1213         | EN 13091          | 1.0       |                       |         |
| 1320         |                   |           |                       |         |
| 1397         | EN15691           | <0,1      |                       |         |
| 1438         |                   |           |                       |         |
| 1523         |                   |           |                       |         |
| 1530         | EN15691           | <1        |                       |         |
| 1656<br>1707 | D1353             | 1.2       |                       |         |
| 1712         | D 1000            | 1.2       |                       |         |
| 1726         | EN15691           | 0.8       |                       |         |
| 1727         | EN15691           | <10       |                       |         |
| 1817         | In house          | 0.6       |                       |         |
| 1835         | EN15691           | <10       |                       |         |
| 1852         |                   |           |                       |         |
| 1919<br>6070 | D1353             | 4.9       |                       |         |
| 6072         | D 1000            | 4.9       |                       |         |
| 6214         |                   |           |                       |         |
| 6297         |                   |           |                       |         |
| 6341         |                   |           |                       |         |
| 6358         |                   |           |                       |         |
|              | <b>m</b>          | 00        |                       |         |
|              | n<br>mean (n)     | 28<br><10 |                       |         |
|              | application range |           | EN15691:09: 10 – 25 m | g/100mL |

# Determination of Nitrogen on sample #20245; results in mg/kg

| lab          | method            | value        | mark z(targ) | remarks |
|--------------|-------------------|--------------|--------------|---------|
| 52           | D4629             | 2.0          | 0.81         |         |
| 120          |                   |              |              |         |
| 150          | D4629             | 1.8          | 0.28         |         |
| 169          |                   |              |              |         |
| 171          |                   |              |              |         |
| 174          |                   |              |              |         |
| 175          |                   |              |              |         |
| 230          |                   |              |              |         |
| 311          | D. 4000           |              |              |         |
| 323          | D4629             | 2.6          | 2.39         |         |
| 329          | D.4000            | 4.00         |              |         |
| 333          | D4629             | 1.00         | -1.83        |         |
| 334<br>337   | D4629             | 1.5          | -0.51<br>    |         |
| 343          |                   |              |              |         |
| 357          | D4629             | 1.2          | -1.30        |         |
| 360          | D4023             | 1.2          | -1.50        |         |
| 396          |                   |              |              |         |
| 444          |                   |              |              |         |
| 468          | D4629             | 1.57         | -0.33        |         |
| 495          | D4629             | 1.55         | -0.38        |         |
| 496          |                   |              |              |         |
| 511          |                   |              |              |         |
| 541          |                   |              |              |         |
| 551          | D4629             | 2.24         | 1.44         |         |
| 554          |                   |              |              |         |
| 558          |                   |              |              |         |
| 621          |                   |              |              |         |
| 631          |                   |              |              |         |
| 633          |                   |              |              |         |
| 634          | D. 4000           |              |              |         |
| 657          | D4629             | 2.1          | 1.07         |         |
| 663          | D4629             | 1.96         | 0.70         |         |
| 823          | D4629             | 1.88         | 0.49         |         |
| 913<br>922   | D4630             | <br>1        | <br>-0.51    |         |
| 1108         | D4629<br>D5762    | 1.5<br>1.334 | -0.95        |         |
| 1189         | D4629             | 0.7          | -2.62        |         |
| 1213         | D4029             | 0.7          | -2.02        |         |
| 1320         |                   |              |              |         |
| 1397         |                   |              |              |         |
| 1438         |                   |              |              |         |
| 1523         |                   |              |              |         |
| 1530         | D4629             | <1           |              |         |
| 1656         |                   |              |              |         |
| 1707         |                   |              |              |         |
| 1712         |                   |              |              |         |
| 1726         |                   |              |              |         |
| 1727         |                   |              |              |         |
| 1817         |                   |              |              |         |
| 1835         |                   |              |              |         |
| 1852         |                   |              |              |         |
| 1919         | D4620             | 2 174        | 1.27         |         |
| 6070         | D4629             | 2.174        | 1.27         |         |
| 6072<br>6214 |                   |              |              |         |
| 6214<br>6297 |                   |              | <b></b>      |         |
| 6341         |                   |              |              |         |
| 6358         |                   |              |              |         |
| 2000         |                   |              |              |         |
|              | normality         | OK           |              |         |
|              | n                 | 16           |              |         |
|              | outliers          | 0            |              |         |
|              | mean (n)          | 1.694        |              |         |
|              | st.dev. (n)       | 0.4953       |              |         |
|              | R(calc.)          | 1.387        |              |         |
|              | st.dev.(D4629:17) | 0.3792       |              |         |
|              | R(D4629:17)       | 1.062        |              |         |
|              |                   |              |              |         |





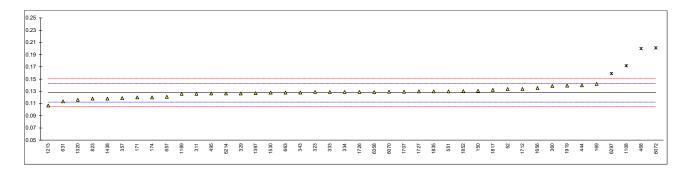


# Determination of pHe with LiCl electrode on sample #20245;

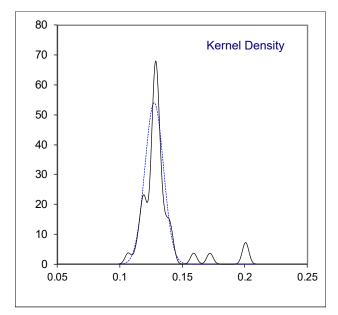
| lab          | method                  | value           | mark z(tar  | remarks      |
|--------------|-------------------------|-----------------|-------------|--------------|
| 52           |                         |                 |             |              |
| 120          |                         |                 |             |              |
| 150          |                         |                 |             | <b></b>      |
| 169          | D0400                   |                 |             |              |
| 171          | D6423                   | 8.01            |             |              |
| 174<br>175   |                         |                 |             |              |
| 230          |                         |                 |             |              |
| 311          |                         |                 |             |              |
| 323          |                         |                 |             |              |
| 329          |                         |                 |             |              |
| 333          |                         |                 |             |              |
| 334          |                         |                 |             |              |
| 337<br>343   |                         |                 | <br>        |              |
| 357          |                         |                 |             |              |
| 360          |                         |                 |             |              |
| 396          |                         |                 |             | <del>_</del> |
| 444          |                         |                 |             |              |
| 468          |                         |                 |             |              |
| 495          |                         |                 |             |              |
| 496<br>511   |                         |                 |             |              |
| 541          |                         |                 |             |              |
| 551          | NBR10891                | 6.21            |             |              |
| 554          |                         |                 |             | <b></b>      |
| 558          |                         |                 |             |              |
| 621          |                         |                 |             |              |
| 631<br>633   |                         |                 |             |              |
| 634          |                         |                 |             |              |
| 657          |                         |                 |             |              |
| 663          |                         |                 |             | <del>_</del> |
| 823          |                         |                 |             |              |
| 913          |                         |                 |             | <del></del>  |
| 922          |                         |                 |             |              |
| 1108<br>1189 |                         |                 |             |              |
| 1213         |                         |                 |             |              |
| 1320         |                         |                 |             |              |
| 1397         |                         |                 |             | <b></b>      |
| 1438         |                         |                 |             |              |
| 1523         |                         |                 |             |              |
| 1530<br>1656 |                         |                 | <del></del> | <b></b>      |
| 1707         |                         |                 |             | <br>         |
| 1712         |                         |                 |             |              |
| 1726         | EN15490                 | 7.43            |             | <del></del>  |
| 1727         | EN15490                 | 6.59            |             | <b></b>      |
| 1817         | EN45400                 |                 |             | <del></del>  |
| 1835<br>1852 | EN15490                 | 6.7             | <del></del> |              |
| 1919         |                         |                 |             |              |
| 6070         |                         |                 |             |              |
| 6072         |                         |                 |             | <del>-</del> |
| 6214         |                         |                 |             | <b></b>      |
| 6297         |                         |                 |             |              |
| 6341<br>6358 |                         |                 |             |              |
| 0000         |                         |                 |             |              |
|              | normality               | unknown         |             |              |
|              | n                       | 5               |             |              |
|              | outliers                | 0               |             |              |
|              | mean (n)                | 6.988           |             |              |
|              | st.dev. (n)<br>R(calc.) | 0.722<br>2.0223 |             |              |
|              | st.dev.(EN15490:07)     | (0.240)         |             |              |
|              | R(EN15490:07)           | (0.6708)        |             |              |
|              | ,                       | ` ,             |             |              |

## Determination of pHe with KCI electrode on sample #20245;

| lab          | method             | value        | mark | z(targ) | remarks              |
|--------------|--------------------|--------------|------|---------|----------------------|
| 52           | EN15490            | 6.7          |      | -1.42   |                      |
| 120          |                    |              |      | -1.72   |                      |
| 150          | D6423              | 7.4          |      | 0.39    |                      |
| 169          | D6423              | 7.8          |      | 1.43    |                      |
| 171          |                    |              |      |         |                      |
| 174          | D6423              | 7.3          |      | 0.13    |                      |
| 175          |                    |              |      |         |                      |
| 230          |                    |              |      |         |                      |
| 311          |                    |              |      |         |                      |
| 323          |                    |              |      |         |                      |
| 329          |                    |              |      |         |                      |
| 333          |                    |              |      |         |                      |
| 334          | EN15490            | 7.55         | С    | 0.78    | first reported 4.707 |
| 337          |                    |              |      |         |                      |
| 343          |                    |              |      |         |                      |
| 357          |                    |              |      |         |                      |
| 360          |                    |              |      |         |                      |
| 396          |                    |              |      |         |                      |
| 444          |                    |              |      |         |                      |
| 468          |                    |              |      |         |                      |
| 495          | EN45400            | 7.47         |      | 0.57    |                      |
| 496          | EN15490            | 7.47         |      | 0.57    |                      |
| 511          |                    |              |      |         |                      |
| 541<br>551   | D6423              | 7.23         |      | -0.05   |                      |
| 554          | D0423              | 1.23         |      | -0.05   |                      |
| 558          |                    |              |      |         |                      |
| 621          |                    |              |      |         |                      |
| 631          |                    |              |      |         |                      |
| 633          |                    |              |      |         |                      |
| 634          |                    |              |      |         |                      |
| 657          |                    |              |      |         |                      |
| 663          |                    |              |      |         |                      |
| 823          | D6423              | 7.104        |      | -0.38   |                      |
| 913          |                    |              |      |         |                      |
| 922          | D6423              | 6.6          |      | -1.68   |                      |
| 1108         |                    |              |      |         |                      |
| 1189         | EN15490            | 7.6          |      | 0.91    |                      |
| 1213         | D6423              | 6.45         |      | -2.07   |                      |
| 1320         |                    |              |      |         |                      |
| 1397         |                    |              |      |         |                      |
| 1438         |                    |              |      |         |                      |
| 1523         | D6423              | 7.552        |      | 0.79    |                      |
| 1530         |                    |              |      |         |                      |
| 1656         |                    |              |      |         |                      |
| 1707         |                    |              |      |         |                      |
| 1712         |                    |              |      |         |                      |
| 1726         |                    |              |      |         |                      |
| 1727         |                    |              |      |         |                      |
| 1817         |                    |              |      |         |                      |
| 1835         |                    |              |      |         |                      |
| 1852         |                    |              |      |         |                      |
| 1919<br>6070 | D6423              | 7.22         |      | -0.08   |                      |
| 6070         | D6423              | 7.22<br>7.36 |      | 0.29    |                      |
| 6214         | D0423              | 7.30         |      | 0.29    |                      |
| 6297         | D6423              | 7.4          |      | 0.39    |                      |
| 6341         | 53720              | 7            |      |         |                      |
| 6358         |                    |              |      |         |                      |
| 2000         |                    |              |      |         |                      |
|              | normality          | OK           |      |         |                      |
|              | n                  | 15           |      |         |                      |
|              | outliers           | 0            |      |         |                      |
|              | mean (n)           | 7.249        |      |         |                      |
|              | st.dev. (n)        | 0.3875       |      |         |                      |
|              | R(calc.)           | 1.085        |      |         |                      |
|              | st.dev.(D6423:20a) | 0.3855       |      |         |                      |
|              | R(D6423:20a)       | 1.079        |      |         |                      |
|              |                    |              |      |         |                      |

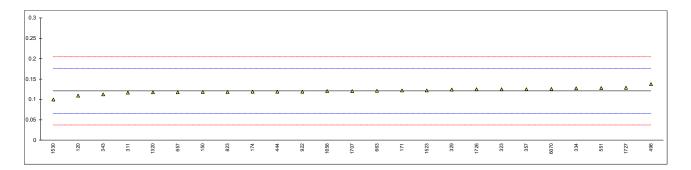


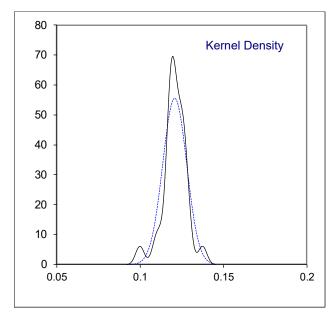




# Determination of Phosphorus as P on sample #20245; results in mg/L

| lab          | method       | value     | mark z(targ | ) remarks                                |
|--------------|--------------|-----------|-------------|------------------------------------------|
| 52           | EN15837      | <0.10     |             |                                          |
| 120          | D2024        |           |             | -                                        |
| 150<br>169   | D3231        | <0.20<br> |             | -                                        |
| 171          | D3231        | <0.10     |             | •<br>-                                   |
| 174          | D3231        |           |             | -                                        |
| 175          |              |           |             | _                                        |
| 230          |              |           |             | -                                        |
| 311          | EN15837      | < 0.13    |             | -                                        |
| 323          | EN15487      | <0.10     |             | -                                        |
| 329          | EN15487      | 0.004     |             | -                                        |
| 333          |              |           |             | -                                        |
| 334          |              |           |             | -                                        |
| 337          | = 1.1.= 1.0= |           |             | -                                        |
| 343          | EN15487      | <0,13     |             | -                                        |
| 357          | EN145007     |           |             | -                                        |
| 360          | EN15837      | < 0.10    |             | -                                        |
| 396<br>444   | EN15937      | 0.09      |             | <del>-</del>                             |
| 468          | EN15837      | 0.09      |             | -                                        |
| 495          |              |           |             | -<br>-                                   |
| 496          |              |           |             | _                                        |
| 511          |              |           |             | -                                        |
| 541          |              |           |             | -                                        |
| 551          | INH-2047     | < 0.13    |             | -                                        |
| 554          |              |           |             | -                                        |
| 558          |              |           |             | -                                        |
| 621          |              |           |             | -                                        |
| 631          |              |           |             | -                                        |
| 633          |              |           |             | -                                        |
| 634          |              |           |             | -                                        |
| 657<br>663   |              |           |             | <del>-</del>                             |
| 823          | UOP389       | <0.11     |             | -                                        |
| 913          | 001 000      |           |             | _                                        |
| 922          |              |           |             | -                                        |
| 1108         | EN15487      | 0.00      |             | -                                        |
| 1189         |              |           |             | -                                        |
| 1213         |              |           |             | -                                        |
| 1320         |              |           |             | -                                        |
| 1397         |              |           |             | -                                        |
| 1438         |              |           |             | -                                        |
| 1523         |              |           |             | -                                        |
| 1530<br>1656 | EN15487      | <0.01     |             | _                                        |
| 1707         | LIN 10401    | ~0.01<br> |             | -                                        |
| 1712         | EN15487      | 0.01      |             | _                                        |
| 1726         | EN15487      | 0.023     |             | -                                        |
| 1727         | EN15487      | <0,15     |             | -                                        |
| 1817         | -            |           |             | -                                        |
| 1835         | EN15837      | 0.03      |             | -                                        |
| 1852         |              |           |             | -                                        |
| 1919         |              |           |             | -                                        |
| 6070         | EN15487      | 0.4       |             | - possibly a false positive test result? |
| 6072         | EN145405     |           |             | -                                        |
| 6214         | EN15487      | 0.139     |             | -                                        |
| 6297         |              |           |             | -                                        |
| 6341         | EN15/197     | <br><0.15 |             | -                                        |
| 6358         | EN15487      | <0,15     |             | -                                        |
|              | n            | 18        |             |                                          |
|              | mean (n)     | <0.15     |             |                                          |
|              |              |           |             |                                          |

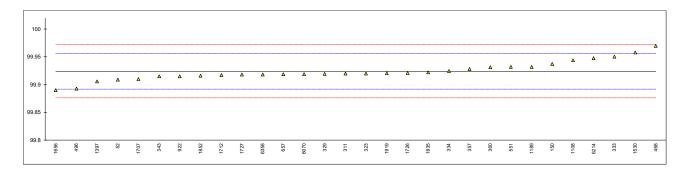
## Determination of Water, Coulometric on sample #20245; results in %M/M

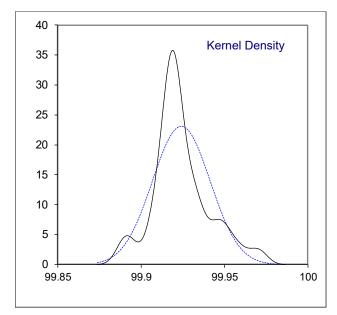

| lab          | method                  | value               | mark       | z(targ)       | remarks               |
|--------------|-------------------------|---------------------|------------|---------------|-----------------------|
| 52           | EN15489                 | 0.134               | HMIN       | 0.86          | Tomano                |
| 120          |                         |                     |            |               |                       |
| 150          | E1064                   | 0.131               |            | 0.47          |                       |
| 169          | E1064                   | 0.142               |            | 1.92          |                       |
| 171          | EN15489                 | 0.11996             |            | -0.99         |                       |
| 174          | E1064                   | 0.120               |            | -0.98         |                       |
| 175          |                         |                     |            |               |                       |
| 230          | EN45400                 | 0.400               |            | 0.40          |                       |
| 311<br>323   | EN15489                 | 0.126               |            | -0.19<br>0.18 |                       |
| 329          | EN15489<br>D6304        | 0.1288<br>0.1263    |            | -0.15         |                       |
| 333          | EN15489                 | 0.1203              |            | 0.20          |                       |
| 334          | EN15489                 | 0.129               |            | 0.20          |                       |
| 337          |                         |                     |            |               |                       |
| 343          | EN15489                 | 0.128               |            | 0.07          |                       |
| 357          | E1064                   | 0.1188              |            | -1.14         |                       |
| 360          | EN15489                 | 0.1389              |            | 1.51          |                       |
| 396          | =111=100                |                     |            |               |                       |
| 444          | EN15489                 | 0.1398              | 0.0(0.04)  | 1.63          | first new cuts d 0.04 |
| 468          | EN15489                 | 0.20                | C,R(0.01)  | 9.58          | first reported 0.24   |
| 495<br>496   | EN15489                 | 0.1262              |            | -0.17<br>     |                       |
| 511          |                         |                     |            |               |                       |
| 541          |                         |                     |            |               |                       |
| 551          | E1064                   | 0.130               |            | 0.34          |                       |
| 554          |                         |                     |            |               |                       |
| 558          |                         |                     |            |               |                       |
| 621          |                         |                     |            |               |                       |
| 631          | D6304                   | 0.1136              |            | -1.83         |                       |
| 633          |                         |                     |            |               |                       |
| 634          | E4004                   | 0.4040              |            |               |                       |
| 657<br>663   | E1064<br>E1064          | 0.1210              |            | -0.85<br>0.07 |                       |
| 823          | E1064                   | 0.1280<br>0.1182    |            | -1.22         |                       |
| 913          | L1004                   |                     |            | -1.22         |                       |
| 922          |                         |                     |            |               |                       |
| 1108         | EN15489                 | 0.172               | C,R(0.01)  | 5.88          | reported 0.172 mg/kg  |
| 1189         | EN15489                 | 0.1257              | , ,        | -0.23         |                       |
| 1213         | D6304                   | 0.10661             |            | -2.75         |                       |
| 1320         | ISO12937                | 0.1162              |            | -1.49         |                       |
| 1397         | EN15489                 | 0.127               |            | -0.06         |                       |
| 1438         | D6304                   | 0.1182              |            | -1.22         |                       |
| 1523         | EN15/190                | 0.12762             |            | 0.02          |                       |
| 1530<br>1656 | EN15489<br>EN15489      | 0.12762             |            | 1.04          |                       |
| 1707         | EN15489                 | 0.1333              |            | 0.27          |                       |
| 1712         | EN15489                 | 0.1340              |            | 0.86          |                       |
| 1726         | EN15489                 | 0.129               |            | 0.20          |                       |
| 1727         | EN15489                 | 0.1296              |            | 0.28          |                       |
| 1817         | In house                | 0.1323              |            | 0.64          |                       |
| 1835         | EN15489                 | 0.1297              |            | 0.30          |                       |
| 1852         | EN15489                 | 0.1304              |            | 0.39          |                       |
| 1919         | EN15489                 | 0.13906<br>0.1293   |            | 1.53          |                       |
| 6070<br>6072 | E1064<br>E1064          | 0.1293              | C,R(0.01)  | 0.24<br>9.72  | first reported 0.163  |
| 6214         | EN15489                 | 0.12622             | C,IX(0.01) | -0.16         | ilist reported 0.103  |
| 6297         | E1064                   | 0.159               | R(0.01)    | 4.17          |                       |
| 6341         |                         |                     | (0.0 .)    |               |                       |
| 6358         | EN15489                 | 0.129               |            | 0.20          |                       |
|              |                         |                     |            |               |                       |
|              | normality               | OK                  |            |               |                       |
|              | n                       | 38                  |            |               |                       |
|              | outliers                | 4                   |            |               |                       |
|              | mean (n)                | 0.12745             |            |               |                       |
|              | st.dev. (n)<br>R(calc.) | 0.007389<br>0.02069 |            |               |                       |
|              | st.dev.(EN15489:07)     | 0.02069             |            |               |                       |
|              | R(EN15489:07)           | 0.007370            |            |               |                       |
|              | compare                 | 3.32.120            |            |               |                       |
|              | R(E1064:16)             | 0.02027             |            |               |                       |
|              | R(D6304:16e1)           | 0.20811             |            |               |                       |
|              |                         |                     |            |               |                       |





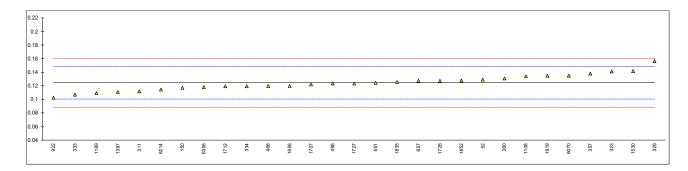

# Determination of Water, Volumetric on sample #20245; results in %M/M

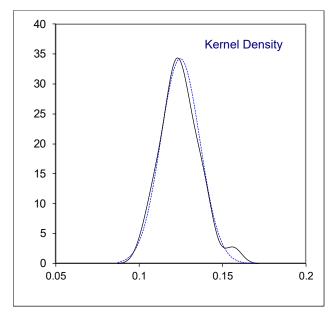

| lab          | method                | value            | mark | z(targ)      | remarks |
|--------------|-----------------------|------------------|------|--------------|---------|
| 52           |                       |                  |      |              |         |
| 120          | E203                  | 0.10935          |      | -0.41        |         |
| 150          | E203                  | 0.118            |      | -0.10        |         |
| 169          | F000                  |                  |      |              |         |
| 171          | E203                  | 0.1217           |      | 0.03         |         |
| 174          | E203                  | 0.119            |      | -0.06        |         |
| 175          |                       |                  |      |              |         |
| 230<br>311   | EN15692               | 0.117            |      | -0.13        |         |
| 323          | E203                  | 0.117            |      | 0.16         |         |
| 329          | E203                  | 0.1245           |      | 0.13         |         |
| 333          |                       |                  |      |              |         |
| 334          | E203                  | 0.1270           |      | 0.22         |         |
| 337          |                       |                  |      |              |         |
| 343          | E203                  | 0.112            |      | -0.31        |         |
| 357          | E203                  | 0.1252           |      | 0.16         |         |
| 360          |                       |                  |      |              |         |
| 396<br>444   | E203                  | 0.1190           |      | -0.06        |         |
| 468          | L203                  | 0.1190           |      | -0.00        |         |
| 495          |                       |                  |      |              |         |
| 496          | E203                  | 0.1375           |      | 0.60         |         |
| 511          |                       |                  |      |              |         |
| 541          |                       |                  |      |              |         |
| 551          | E203                  | 0.128            |      | 0.26         |         |
| 554          |                       |                  |      |              |         |
| 558          |                       |                  |      |              |         |
| 621          |                       |                  |      |              |         |
| 631<br>633   |                       |                  |      |              |         |
| 634          |                       |                  |      |              |         |
| 657          | E203                  | 0.1175           |      | -0.12        |         |
| 663          | E203                  | 0.1214           |      | 0.02         |         |
| 823          | D1364                 | 0.1182           |      | -0.09        |         |
| 913          |                       |                  |      |              |         |
| 922          | E203                  | 0.119            |      | -0.06        |         |
| 1108         |                       |                  |      |              |         |
| 1189         |                       |                  |      |              |         |
| 1213<br>1320 | E203                  | 0.1174           |      | -0.12        |         |
| 1397         | L203                  |                  |      | -0.12        |         |
| 1438         |                       |                  |      |              |         |
| 1523         | E203                  | 0.122            |      | 0.04         |         |
| 1530         | E203                  | 0.09982          |      | -0.75        |         |
| 1656         | E203                  | 0.1202           |      | -0.02        |         |
| 1707         | E203                  | 0.1202           |      | -0.02        |         |
| 1712         | EN45600               | 0.1050           |      | 0.15         |         |
| 1726<br>1727 | EN15692<br>EN15692    | 0.1250<br>0.1289 |      | 0.15<br>0.29 |         |
| 1817         | LINIJUJZ              | 0.1209           |      | 0.29         |         |
| 1835         |                       |                  |      |              |         |
| 1852         |                       |                  |      |              |         |
| 1919         |                       |                  |      |              |         |
| 6070         | E203                  | 0.1258           |      | 0.18         |         |
| 6072         |                       |                  |      |              |         |
| 6214         |                       |                  |      |              |         |
| 6297         |                       |                  |      |              |         |
| 6341<br>6358 |                       |                  |      |              |         |
| 0336         |                       |                  |      |              |         |
|              | normality             | not OK           |      |              |         |
|              | n                     | 25               |      |              |         |
|              | outliers              | 0                |      |              |         |
|              | mean (n)              | 0.12075          |      |              |         |
|              | st.dev. (n)           | 0.007194         |      |              |         |
|              | R(calc.)              | 0.02014          |      |              |         |
|              | st.dev.(E203:16)      | 0.027857         |      |              |         |
|              | R(E203:16)<br>compare | 0.078            |      |              |         |
|              | R(EN15692:09)         | 0.095            |      |              |         |
|              | ()                    | 0.000            |      |              |         |





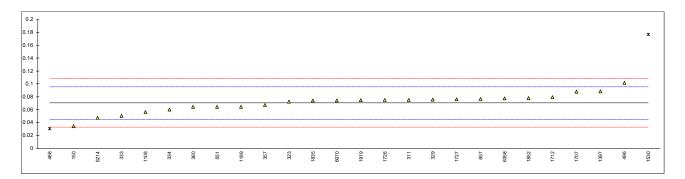

## Determination of Ethanol incl. higher alcohols acc. to EN15721 on sample #20245 in %M/M

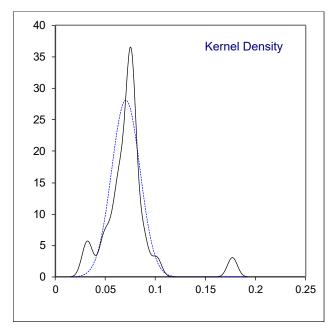

| lab          | method                  | value                | mark | z(targ)        | remarks  |
|--------------|-------------------------|----------------------|------|----------------|----------|
| 52           | EN15721                 | 99.909               | παικ | -0.94          | Tolliano |
| 120          |                         |                      |      |                |          |
| 150          | EN15721                 | 99.937               |      | 0.81           |          |
| 169          |                         |                      |      |                |          |
| 171<br>174   |                         |                      |      |                |          |
| 174          |                         |                      |      |                |          |
| 230          |                         |                      |      |                |          |
| 311          | EN15721                 | 99.92                |      | -0.25          |          |
| 323          | EN15721                 | 99.920               |      | -0.25          |          |
| 329          | EN15721                 | 99.9195              |      | -0.28          |          |
| 333<br>334   | EN15721<br>EN15721      | 99.950<br>99.924     |      | 1.62<br>0.00   |          |
| 337          | LIVIOIZI                |                      |      |                |          |
| 343          | EN15721                 | 99.915               |      | -0.57          |          |
| 357          | EN15721                 | 99.928               |      | 0.25           |          |
| 360          | EN15721                 | 99.9311              |      | 0.44           |          |
| 396<br>444   |                         |                      |      |                |          |
| 468          | EN15721                 | 99.97                |      | 2.87           |          |
| 495          | LIVIOIZI                |                      |      |                |          |
| 496          | EN15721                 | 99.8927              |      | -1.96          |          |
| 511          |                         |                      |      |                |          |
| 541          | INII 1040               |                      |      |                |          |
| 551<br>554   | INH-1313                | 99.932               |      | 0.50           |          |
| 558          |                         |                      |      |                |          |
| 621          |                         |                      |      |                |          |
| 631          |                         |                      |      |                |          |
| 633          |                         |                      |      |                |          |
| 634<br>657   | INH-02                  | 99.9185              |      | -0.35          |          |
| 663          | IINI I-UZ               |                      |      | -0.55          |          |
| 823          |                         |                      |      |                |          |
| 913          |                         |                      |      |                |          |
| 922          | INH-02                  | 99.915               |      | -0.57          |          |
| 1108         | EN15721                 | 99.944               |      | 1.25           |          |
| 1189<br>1213 | EN15721                 | 99.932               |      | 0.50           |          |
| 1320         |                         |                      |      |                |          |
| 1397         | EN15721                 | 99.906               |      | -1.13          |          |
| 1438         |                         |                      |      |                |          |
| 1523         | EN45704                 |                      |      | 0.40           |          |
| 1530<br>1656 | EN15721<br>EN15721      | 99.958<br>99.89      |      | 2.12<br>-2.13  |          |
| 1707         | EN15721                 | 99.91                |      | -0.88          |          |
| 1712         | EN15721                 | 99.9170              |      | -0.44          |          |
| 1726         | EN15721                 | 99.921               |      | -0.19          |          |
| 1727         | EN15721                 | 99.918               |      | -0.38          |          |
| 1817         | EN45704                 |                      |      | 0.40           |          |
| 1835<br>1852 | EN15721<br>EN15721      | 99.922<br>99.9163    |      | -0.13<br>-0.48 |          |
| 1919         | EN15721                 | 99.9205              |      | -0.22          |          |
| 6070         | EN15721                 | 99.919               |      | -0.32          |          |
| 6072         |                         |                      |      |                |          |
| 6214         | EN15721                 | 99.9477              |      | 1.48           |          |
| 6297         |                         |                      |      |                |          |
| 6341<br>6358 | EN15721                 | 99.918               |      | -0.38          |          |
| 0000         | L. 110/21               | 50.010               |      | 0.00           |          |
|              | normality               | suspect              |      |                |          |
|              | n                       | 30                   |      |                |          |
|              | outliers                | 0 02404              |      |                |          |
|              | mean (n)<br>st.dev. (n) | 99.92404<br>0.017249 |      |                |          |
|              | R(calc.)                | 0.017249             |      |                |          |
|              | st.dev.(EN15721:13)     | 0.015989             |      |                |          |
|              | R(EN15721:13)           | 0.04477              |      |                |          |
|              |                         |                      |      |                |          |





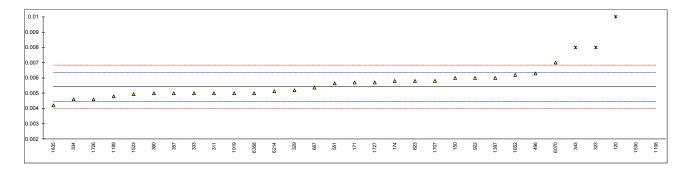

# Determination of Higher alcohols acc. to EN15721 on sample #20245; results in % M/M

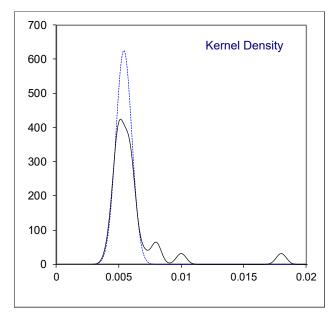

| lab          | method               | value            | mark    | z(targ)       | remarks               |
|--------------|----------------------|------------------|---------|---------------|-----------------------|
| 52           | EN15721              | 0.129            | IIIWIII | 0.37          |                       |
| 120          |                      |                  |         |               |                       |
| 150          | EN15721              | 0.117            |         | -0.62         |                       |
| 169<br>171   |                      |                  |         |               |                       |
| 174          |                      |                  |         |               |                       |
| 175          |                      |                  |         |               |                       |
| 230          | EN45704              |                  |         | 4.04          |                       |
| 311<br>323   | EN15721<br>EN15721   | 0.112<br>0.141   |         | -1.04<br>1.37 |                       |
| 329          | EN15721              | 0.1562           |         | 2.63          |                       |
| 333          | EN15721              | 0.107            |         | -1.46         |                       |
| 334          | EN15721              | 0.1196           |         | -0.41         |                       |
| 337<br>343   |                      |                  |         |               |                       |
| 357          | EN15721              | 0.138            |         | 1.12          |                       |
| 360          | EN15721              | 0.1308           |         | 0.52          |                       |
| 396          |                      |                  |         |               |                       |
| 444<br>468   | EN15721              | 0.12             |         | -0.38         |                       |
| 495          | LIVIOIZI             |                  |         |               |                       |
| 496          | EN15721              | 0.1234           |         | -0.09         |                       |
| 511          |                      |                  |         |               |                       |
| 541<br>551   | INH-1313             | 0.12409          |         | -0.04         |                       |
| 554          | 11411-1010           |                  |         |               |                       |
| 558          |                      |                  |         |               |                       |
| 621          |                      |                  |         |               |                       |
| 631<br>633   |                      |                  |         |               |                       |
| 634          |                      |                  |         |               |                       |
| 657          | INH-02               | 0.1272           |         | 0.22          |                       |
| 663          |                      |                  |         |               |                       |
| 823<br>913   |                      |                  |         |               |                       |
| 922          | INH-02               | 0.1024           |         | -1.84         |                       |
| 1108         | EN15721              | 0.134            |         | 0.79          |                       |
| 1189<br>1213 | EN15721              | 0.109            |         | -1.29<br>     |                       |
| 1320         |                      |                  |         |               |                       |
| 1397         | EN15721              | 0.111            |         | -1.12         |                       |
| 1438         |                      |                  |         |               |                       |
| 1523<br>1530 | EN15721              | 0.1415           | С       | 1.41          | first reported 0.2286 |
| 1656         | EN15721              | 0.1413           | C       | -0.38         | first reported 0.33   |
| 1707         | In house             | 0.122            |         | -0.21         | 1                     |
| 1712         | EN15721              | 0.1192           |         | -0.44         |                       |
| 1726<br>1727 | EN15721<br>EN15721   | 0.1272<br>0.1235 |         | 0.22<br>-0.09 |                       |
| 1817         | LIVIOIZI             | 0.1233           |         | -0.03         |                       |
| 1835         | EN15721              | 0.1258           |         | 0.11          |                       |
| 1852         | EN15721              | 0.1280           |         | 0.29          |                       |
| 1919<br>6070 | EN15721<br>EN15721   | 0.1348<br>0.135  |         | 0.85<br>0.87  |                       |
| 6072         | LIVIOIZI             |                  |         |               |                       |
| 6214         | EN15721              | 0.1145           |         | -0.83         |                       |
| 6297         |                      |                  |         |               |                       |
| 6341<br>6358 | EN15721              | <br>0.118        |         | -0.54         |                       |
| 0000         | LINIOIZI             | 0.110            |         | -0.04         |                       |
|              | normality            | OK               |         |               |                       |
|              | n<br>                | 29               |         |               |                       |
|              | outliers<br>mean (n) | 0<br>0.12452     |         |               |                       |
|              | st.dev. (n)          | 0.011675         |         |               |                       |
|              | R(calc.)             | 0.03269          |         |               |                       |
|              | st.dev.(EN15721:13)  | 0.012039         |         |               |                       |
|              | R(EN15721:13)        | 0.03371          |         |               |                       |





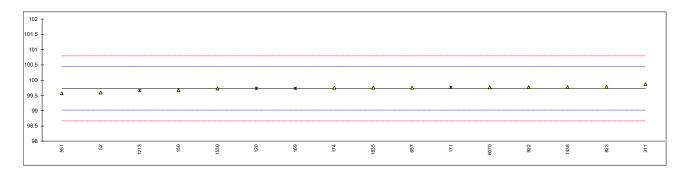

# Determination of Impurities acc. to EN15721 on sample #20245; results in % M/M

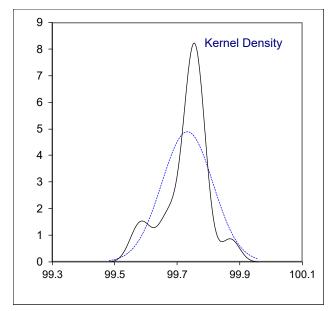

| lab          | method                 | value        | mark      | z(targ)      | remarks               |
|--------------|------------------------|--------------|-----------|--------------|-----------------------|
| 52           | EN15721                | <0.1         | mark      | 2(tary)      | Tomarko               |
| 120          | LINIUIZI               | <b>~</b> 0.1 |           |              |                       |
| 150          | EN15721                | 0.034        | С         | -2.89        | first reported 0.177  |
| 169          | 21110721               |              | Ü         |              | mot reported 6.177    |
| 171          |                        |              |           |              |                       |
| 174          |                        |              |           |              |                       |
| 175          |                        |              |           |              |                       |
| 230          |                        |              |           |              |                       |
| 311          | EN15721                | 0.075        |           | 0.37         |                       |
| 323          | EN15721                | 0.072        |           | 0.13         |                       |
| 329          | EN15721                | 0.0753       |           | 0.39         |                       |
| 333          | EN15721                | 0.050        |           | -1.62        |                       |
| 334          | EN15721                | 0.060        | С         | -0.82        | first reported 0.1958 |
| 337          |                        |              |           |              |                       |
| 343          |                        |              |           |              |                       |
| 357          | EN15721                | 0.067        |           | -0.27        |                       |
| 360          | EN15721                | 0.0639       |           | -0.51        |                       |
| 396          |                        |              |           |              |                       |
| 444          | =111==01               |              | D(0.05)   |              |                       |
| 468          | EN15721                | 0.03         | R(0.05)   | -3.21        |                       |
| 495          | EN145704               | 0.1010       |           | 2.44         |                       |
| 496<br>511   | EN15721                | 0.1010       |           | 2.44         |                       |
| 511<br>541   |                        |              |           |              |                       |
| 541<br>551   | INIL 1212              | 0.06400      |           | 0.50         |                       |
| 551<br>554   | INH-1313               | 0.06400      |           | -0.50        |                       |
| 558          |                        |              |           |              |                       |
| 621          |                        |              |           |              |                       |
| 631          |                        |              |           |              |                       |
| 633          |                        |              |           |              |                       |
| 634          |                        |              |           |              |                       |
| 657          | INH-02                 | 0.0761       |           | 0.46         |                       |
| 663          |                        |              |           |              |                       |
| 823          |                        |              |           |              |                       |
| 913          |                        |              |           |              |                       |
| 922          |                        |              |           |              |                       |
| 1108         | EN15721                | 0.056        |           | -1.14        |                       |
| 1189         | EN15721                | 0.064        |           | -0.50        |                       |
| 1213         |                        |              |           |              |                       |
| 1320         |                        |              |           |              |                       |
| 1397         | EN15721                | 0.088        |           | 1.40         |                       |
| 1438         |                        |              |           |              |                       |
| 1523         | EN145704               |              | 0.0(0.04) |              | C + + + + 0.0700      |
| 1530         | EN15721                | 0.1767       | C,R(0.01) | 8.45         | first reported 0.2702 |
| 1656         | In house               | 0.0877       |           | 1 20         |                       |
| 1707<br>1712 | In house<br>EN15721    | 0.0877       |           | 1.38<br>0.70 |                       |
| 1712         | EN15721<br>EN15721     | 0.0792       |           | 0.70         |                       |
| 1720         | EN15721                | 0.0749       |           | 0.36         |                       |
| 1817         | LINIUIZI               | 0.070        |           | 0.45         |                       |
| 1835         | EN15721                | 0.0739       |           | 0.28         |                       |
| 1852         | EN15721                | 0.0775       |           | 0.57         |                       |
| 1919         | EN15721                | 0.0745       |           | 0.33         |                       |
| 6070         | EN15721                | 0.074        |           | 0.29         |                       |
| 6072         |                        |              |           |              |                       |
| 6214         | EN15721                | 0.047137     |           | -1.84        |                       |
| 6297         |                        |              |           |              |                       |
| 6341         |                        |              |           |              |                       |
| 6358         | EN15721                | 0.077        |           | 0.53         |                       |
|              |                        |              |           |              |                       |
|              | normality              | suspect      |           |              |                       |
|              | n                      | 24           |           |              |                       |
|              | outliers               | 2            |           |              |                       |
|              | mean (n)               | 0.07034      |           |              |                       |
|              | st.dev. (n)            | 0.014179     |           |              |                       |
|              | R(calc.)               | 0.03970      |           |              |                       |
|              | st.dev.(Horwitz (n=9)) | 0.012586     |           |              |                       |
|              | R(Horwitz (n=9))       | 0.03524      |           |              |                       |





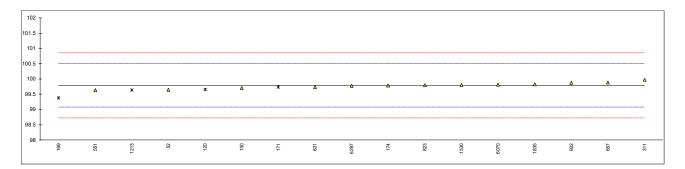

## Determination of Methanol on sample #20245; results in %M/M

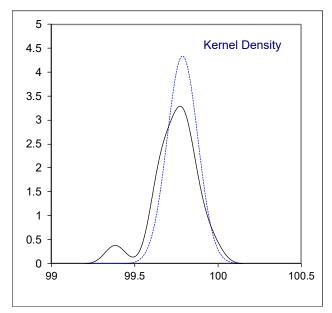

| lab          | method                       | value               | mark      | z(targ)       | remarks                                                     |
|--------------|------------------------------|---------------------|-----------|---------------|-------------------------------------------------------------|
| 52           | EN15721                      | <0.1                | MUNIT     |               | Tomand                                                      |
| 120          | D5501                        | 0.01                | R(0.01)   | 9.65          |                                                             |
| 150          | EN15721                      | 0.006               | (0.01)    | 1.23          |                                                             |
| 169          | - <del>-</del> ·             |                     |           |               |                                                             |
| 171          | D5501                        | 0.0057              |           | 0.60          |                                                             |
| 174          | D5501                        | 0.0058              | С         | 0.81          | first reported 0.01                                         |
| 175          |                              |                     |           |               |                                                             |
| 230          | =114==04                     |                     |           |               |                                                             |
| 311          | EN15721                      | 0.005               | D(0.05)   | -0.87         |                                                             |
| 323<br>329   | EN15721<br>EN15721           | 0.008<br>0.0052     | R(0.05)   | 5.44<br>-0.45 |                                                             |
| 333          | EN15721                      | 0.0052              |           | -0.43         |                                                             |
| 334          | EN15721                      | 0.0046              |           | -1.71         |                                                             |
| 337          |                              |                     |           |               |                                                             |
| 343          | EN15721                      | 0.008               | R(0.05)   | 5.44          |                                                             |
| 357          | EN15721                      | 0.005               |           | -0.87         |                                                             |
| 360          | EN15721                      | 0.0050              |           | -0.87         |                                                             |
| 396          |                              |                     |           |               |                                                             |
| 444          | EN16701                      | <br>-0.01           |           |               |                                                             |
| 468<br>495   | EN15721                      | <0,01<br>           |           |               |                                                             |
| 495<br>496   | EN15721                      | 0.0063              |           | 1.86          |                                                             |
| 511          | TIO/ 2                       |                     |           |               |                                                             |
| 541          |                              |                     |           |               |                                                             |
| 551          | INH-1313                     | 0.00565             |           | 0.50          |                                                             |
| 554          |                              |                     |           |               |                                                             |
| 558          |                              |                     |           |               |                                                             |
| 621          | DEEOA                        |                     | 0         |               | first remarked 0.00                                         |
| 631<br>633   | D5501                        | <0.01               | С         |               | first reported 0.02                                         |
| 634          |                              |                     |           |               |                                                             |
| 657          | INH-02                       | 0.005364            | С         | -0.11         | first reported 53.64 %M/M                                   |
| 663          |                              |                     | -         |               |                                                             |
| 823          | D5501                        | 0.0058              | С         | 0.81          | first reported 0.0221                                       |
| 913          |                              |                     |           |               |                                                             |
| 922          | INH-02                       | 0.0060              |           | 1.23          |                                                             |
| 1108         | EN15721                      | 0.029               | C,R(0.01) | 49.65         | first reported 0                                            |
| 1189<br>1213 | EN15721                      | 0.0048              | С         | -1.29         | fr 0.00 corrected into: Not detected with 1.00 = 0.04% v/v  |
| 1213<br>1320 | D5501                        |                     | C         |               | fr. 0.09, corrected into: Not detected with LOD = 0,01% v/v |
| 1320         | EN15721                      | 0.006               |           | 1.23          |                                                             |
| 1438         |                              |                     |           |               |                                                             |
| 1523         | D5501                        | 0.004931            |           | -1.02         |                                                             |
| 1530         | EN15721                      | 0.0180              | C,R(0.01) | 26.49         | first reported 0.0207                                       |
| 1656         | EN15721                      | <0.01               |           |               |                                                             |
| 1707         | In house                     | 0.0058              |           | 0.81          |                                                             |
| 1712<br>1726 | EN15721                      | <0,010              |           | <br>1 71      |                                                             |
| 1726<br>1727 | EN15721<br>EN15721           | 0.0046<br>0.0057    |           | -1.71<br>0.60 |                                                             |
| 1817         | LINIUIZI                     | 0.0057              |           | 0.00          |                                                             |
| 1835         | EN15721                      | 0.0042              |           | -2.56         |                                                             |
| 1852         | EN15721                      | 0.0062              |           | 1.65          |                                                             |
| 1919         | EN15721                      | 0.005               |           | -0.87         |                                                             |
| 6070         | EN15721                      | 0.007               |           | 3.34          |                                                             |
| 6072         | EN46704                      | 0.00540             |           |               |                                                             |
| 6214         | EN15721                      | 0.00513             |           | -0.60         |                                                             |
| 6297<br>6341 |                              |                     |           |               |                                                             |
| 6358         | EN15721                      | 0.005               |           | -0.87         |                                                             |
| 2000         |                              | 3.000               |           | 3.01          |                                                             |
|              | normality                    | OK                  |           |               |                                                             |
|              | n                            | 26                  |           |               |                                                             |
|              | outliers                     | 5                   |           |               |                                                             |
|              | mean (n)                     | 0.00541             |           |               |                                                             |
|              | st.dev. (n)                  | 0.000638            |           |               |                                                             |
|              | R(calc.)<br>st.dev.(Horwitz) | 0.00179<br>0.000475 |           |               |                                                             |
|              | R(Horwitz)                   | 0.000473            |           |               |                                                             |
|              | compare                      | 5.55.50             |           |               |                                                             |
|              | R(D5501:20)                  | 0.01319             |           |               | application range: 0.01 – 0.6 %M/M                          |
|              | R(EN15721:13)                | -0.00449            |           |               | application range: 0.1 – 3 %M/M                             |
|              |                              |                     |           |               |                                                             |






### Determination of Ethanol acc. to ASTM D5501 on sample #20245; results in %M/M


| lab          | method            | value     | mark   | z(targ)        | remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|-------------------|-----------|--------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 52           | D5501             | 99.60     | IIIuIK | -0.37          | Tomaino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 120          | D5501             | 99.73     | ex     | -0.37<br>-0.01 | result excluded as Ethanol %M/M is > Ethanol %V/V which is not possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 150          | D5501             | 99.68     | CX     | -0.15          | result excluded as Ethanor ////////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 169          | D5501             | 99.7349   | ex     | 0.01           | result excluded as Ethanol %M/M is > Ethanol %V/V which is not possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 171          | D5501             | 99.76     | ex     | 0.08           | result excluded as Ethanol %M/M is > Ethanol %V/V which is not possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 174          | D5501             | 99.75     | CX     | 0.05           | result excluded as Ethanor /00//01/15 - Ethanor /00//0 Which is not possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 175          | D0001             |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 230          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 311          | D5501             | 99.87     |        | 0.39           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 323          | D0001             |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 329          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 333          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 334          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 337          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 343          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 357          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 360          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 396          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 444          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 468          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 495          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 496          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 511          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 541          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 551          | D5501             | 99.57     |        | -0.46          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 554          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 558          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 621          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 631          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 633          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 634          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 657          | D5501             | 99.7589   |        | 0.07           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 663          |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 823          | D5501             | 99.7810   |        | 0.14           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 913          | D==0.4            |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 922          | D5501             | 99.77     |        | 0.11           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1108         |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1189         | DEEOA             |           |        | 0.00           | manufactural of a Character of MANA is a Character of MANA is a Character of the control of the |
| 1213         | D5501             | 99.66     | ex     | -0.20          | result excluded as Ethanol %M/M is > Ethanol %V/V which is not possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1320<br>1397 |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | In house          | 00.77     |        | 0.11           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1438<br>1523 | III IIouse        | 99.77<br> |        | 0.11           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1530         | D5501             | 99.7298   |        | -0.01          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1656         | D0001             |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1707         |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1712         |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1726         |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1727         |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1817         |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1835         | D5501             | 99.75     |        | 0.05           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1852         |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1919         |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6070         | D5501             | 99.76     |        | 0.08           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6072         |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6214         |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6297         |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6341         |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6358         |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                   |           |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | normality         | OK        |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | n                 | 12        |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | outliers          | 0 + 4ex   |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | mean (n)          | 99.7325   |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | st.dev. (n)       | 0.08139   |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | R(calc.)          | 0.2279    |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | st.dev.(D5501:20) | 0.35454   |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | R(D5501:20)       | 0.9927    |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |





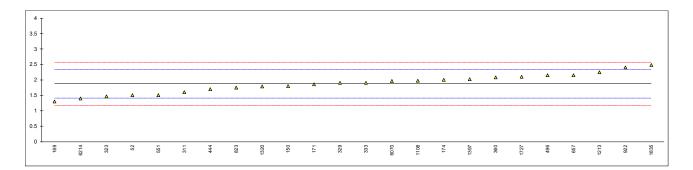

### Determination of Ethanol acc. to ASTM D5501 on sample #20245; results in %V/V

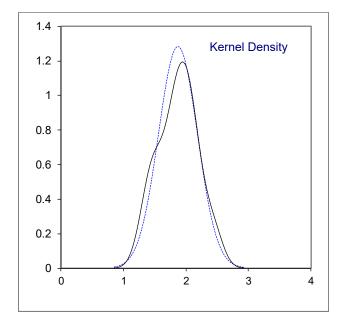
| lab          | method            | value   | mark | z(targ)        | remarks                                                                        |
|--------------|-------------------|---------|------|----------------|--------------------------------------------------------------------------------|
| 52           | D5501             | 99.65   | HIGH | -0.39          | Tomano                                                                         |
| 120          | D5501             | 99.66   | ex   | -0.39          | result excluded as Ethanol %M/M is > Ethanol %V/V which is not possible        |
| 150          | D5501             | 99.71   | CA.  | -0.22          | Toodit oxolded as Ethanol /000/101 is a Ethanol /00/10 willoth is hot possible |
| 169          | D5501             | 99.3832 | ex   | -0.22<br>-1.14 | result excluded as Ethanol %M/M is > Ethanol %V/V which is not possible        |
| 171          | D5501             | 99.73   | ex   | -0.16          | result excluded as Ethanol %M/M is > Ethanol %V/V which is not possible        |
| 174          | D5501             | 99.78   | ΟΛ   | -0.10          | 100ail 0x010000 do Ediano 7010/10 10 2 Ediano 700/ V Willott 10 Hot possible   |
| 175          | _ 000 1           |         |      | -0.02          |                                                                                |
| 230          |                   |         |      |                |                                                                                |
| 311          | D5501             | 99.97   |      | 0.52           |                                                                                |
| 323          | 20001             |         |      |                |                                                                                |
| 329          |                   |         |      |                |                                                                                |
| 333          |                   |         |      |                |                                                                                |
| 334          |                   |         |      |                |                                                                                |
| 337          |                   |         |      |                |                                                                                |
| 343          |                   |         |      |                |                                                                                |
| 357          |                   |         |      |                |                                                                                |
| 360          |                   |         |      |                |                                                                                |
| 396          |                   |         |      |                |                                                                                |
| 444          |                   |         |      |                |                                                                                |
| 468          |                   |         |      |                |                                                                                |
| 495          |                   |         |      |                |                                                                                |
| 496          |                   |         |      |                |                                                                                |
| 511          |                   |         |      |                |                                                                                |
| 541          |                   |         |      |                |                                                                                |
| 551          | D5501             | 99.64   |      | -0.42          |                                                                                |
| 554          |                   |         |      |                |                                                                                |
| 558          |                   |         |      |                |                                                                                |
| 621          |                   |         |      |                |                                                                                |
| 631          | D5501             | 99.733  |      | -0.15          |                                                                                |
| 633          |                   |         |      |                |                                                                                |
| 634          |                   |         |      |                |                                                                                |
| 657          | D5501             | 99.8854 |      | 0.28           |                                                                                |
| 663          |                   |         |      |                |                                                                                |
| 823          | D5501             | 99.7948 |      | 0.02           |                                                                                |
| 913          | B==0.4            |         |      |                |                                                                                |
| 922          | D5501             | 99.87   |      | 0.23           |                                                                                |
| 1108         |                   |         |      |                |                                                                                |
| 1189         | DEEOA             |         |      | 0.40           |                                                                                |
| 1213         | D5501             | 99.64   | ex   | -0.42          | result excluded as Ethanol %M/M is > Ethanol %V/V which is not possible        |
| 1320<br>1397 |                   |         |      |                |                                                                                |
|              |                   |         |      |                |                                                                                |
| 1438<br>1523 |                   |         |      |                |                                                                                |
| 1530         | D5501             | 99.8    |      | 0.04           |                                                                                |
| 1656         | D0001             |         |      | 0.04           |                                                                                |
| 1707         |                   |         |      |                |                                                                                |
| 1712         |                   |         |      |                |                                                                                |
| 1726         |                   |         |      |                |                                                                                |
| 1727         |                   |         |      |                |                                                                                |
| 1817         |                   |         |      |                |                                                                                |
| 1835         | D5501             | 99.82   |      | 0.09           |                                                                                |
| 1852         |                   |         |      |                |                                                                                |
| 1919         |                   |         |      |                |                                                                                |
| 6070         | D5501             | 99.81   |      | 0.06           |                                                                                |
| 6072         |                   |         |      |                |                                                                                |
| 6214         |                   |         |      |                |                                                                                |
| 6297         | D5501             | 99.77   |      | -0.05          |                                                                                |
| 6341         |                   |         |      |                |                                                                                |
| 6358         |                   |         |      |                |                                                                                |
|              |                   |         |      |                |                                                                                |
|              | normality         | OK      |      |                |                                                                                |
|              | n                 | 13      |      |                |                                                                                |
|              | outliers          | 0 + 4ex |      |                |                                                                                |
|              | mean (n)          | 99.7872 |      |                |                                                                                |
|              | st.dev. (n)       | 0.09196 |      |                |                                                                                |
|              | R(calc.)          | 0.2575  |      |                |                                                                                |
|              | st.dev.(D5501:20) | 0.35442 |      |                |                                                                                |
|              | R(D5501:20)       | 0.9924  |      |                |                                                                                |





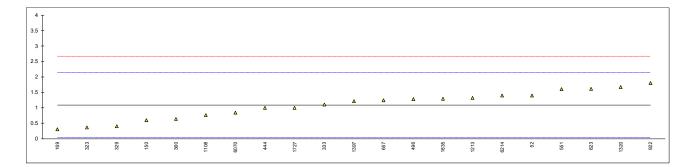
## Determination of Bitrex on sample #20245; results in mg/kg

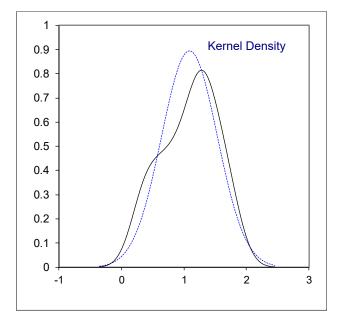

| l a la        | waath a d     | value     | -/         | wa wa walea |
|---------------|---------------|-----------|------------|-------------|
| <b>lab</b> 52 | method        | value     | mark z(tar |             |
| 52<br>120     |               |           |            |             |
| 150           |               |           |            |             |
| 169           |               |           |            | <del></del> |
| 171           |               |           |            | <b></b>     |
| 174           |               |           |            | <del></del> |
| 175           |               |           |            | <del></del> |
| 230<br>311    |               |           |            | <del></del> |
| 323           |               |           |            |             |
| 329           | In house      | 35        |            |             |
| 333           |               |           |            | <b></b>     |
| 334           |               |           |            | <del></del> |
| 337<br>343    | INILI 1077    | 12 //1    |            |             |
| 357           | INH-1877      | 13.41<br> |            |             |
| 360           |               |           |            |             |
| 396           |               |           |            |             |
| 444           |               |           |            | <del></del> |
| 468           |               |           |            | <del></del> |
| 495<br>496    |               |           |            |             |
| 511           |               |           |            | <del></del> |
| 541           |               |           |            | <del></del> |
| 551           | INH-3284      | 46.5      |            |             |
| 554           |               |           |            | <b></b>     |
| 558           |               |           |            |             |
| 621<br>631    |               |           |            |             |
| 633           |               |           |            |             |
| 634           |               |           |            |             |
| 657           |               |           |            | <del></del> |
| 663           |               |           |            | <del></del> |
| 823           |               |           |            |             |
| 913<br>922    |               |           |            |             |
| 1108          |               |           |            |             |
| 1189          |               |           |            | <del></del> |
| 1213          |               |           |            | <b></b>     |
| 1320          |               |           |            | <del></del> |
| 1397<br>1438  |               | 38.3      |            |             |
| 1523          |               | 30.3      |            |             |
| 1530          |               |           |            | <b></b>     |
| 1656          |               |           |            | <del></del> |
| 1707          | In house      | 12.66     |            | <b></b>     |
| 1712          |               |           |            | <del></del> |
| 1726<br>1727  |               |           |            | <del></del> |
| 1817          |               |           |            | <br>        |
| 1835          |               |           |            |             |
| 1852          |               |           |            |             |
| 1919          |               |           |            |             |
| 6070          |               |           |            |             |
| 6072<br>6214  |               |           |            |             |
| 6297          |               |           |            |             |
| 6341          |               |           |            |             |
| 6358          |               |           |            |             |
|               |               | _         |            |             |
|               | n<br>maan (n) | 5         |            |             |
|               | mean (n)      | <50       |            |             |
|               |               |           |            |             |


### Determination of Gum (solvent washed) on sample #20245; results in mg/100mL

| lab          | method       | value    | mark | z(targ) | remarks   |
|--------------|--------------|----------|------|---------|-----------|
| 52           | D381         | <0.5     | man  | Z(tary) | TOTHATING |
| 120          | D381         | <0.5     |      |         |           |
| 150          | D381         | <0.5     |      |         |           |
| 169          | D381         | 0.0      |      |         |           |
| 171          | D381         | <0.5     |      |         |           |
| 174          |              |          |      |         |           |
| 175          |              |          |      |         |           |
| 230          |              |          |      |         |           |
| 311          |              |          |      |         |           |
| 323          |              |          |      |         |           |
| 329          |              |          |      |         |           |
| 333          |              |          |      |         |           |
| 334          | D381         | <0.5     |      |         |           |
| 337          |              |          |      |         |           |
| 343          |              |          |      |         |           |
| 357          | D381         | <1       |      |         |           |
| 360          | D381         | 0.8      |      |         |           |
| 396          |              |          |      |         |           |
| 444          |              |          |      |         |           |
| 468          |              |          |      |         |           |
| 495          |              |          |      |         |           |
| 496          |              |          |      |         |           |
| 511          |              |          |      |         |           |
| 541          | D391         |          |      |         |           |
| 551<br>554   | D381         | <0.5<br> |      |         |           |
| 558          |              |          |      |         |           |
| 621          |              |          |      |         |           |
| 631          |              |          |      |         |           |
| 633          |              |          |      |         |           |
| 634          |              |          |      |         |           |
| 657          |              |          |      |         |           |
| 663          |              |          |      |         |           |
| 823          | D381         | <0.5     |      |         |           |
| 913          |              |          |      |         |           |
| 922          | D381         | 1.3      |      |         |           |
| 1108         |              |          |      |         |           |
| 1189         | D381         | 0.3      |      |         |           |
| 1213         |              |          |      |         |           |
| 1320         |              |          |      |         |           |
| 1397         |              |          |      |         |           |
| 1438         |              |          |      |         |           |
| 1523         | <b>D</b> 004 |          |      |         |           |
| 1530         | D381         | <1       |      |         |           |
| 1656         |              |          |      |         |           |
| 1707         |              |          |      |         |           |
| 1712<br>1726 |              |          |      |         |           |
| 1720         |              |          |      |         |           |
| 1817         |              |          |      |         |           |
| 1835         |              |          |      |         |           |
| 1852         |              |          |      |         |           |
| 1919         |              |          |      |         |           |
| 6070         | D381         | 0.2      |      |         |           |
| 6072         |              |          |      |         |           |
| 6214         |              |          |      |         |           |
| 6297         |              |          |      |         |           |
| 6341         |              |          |      |         |           |
| 6358         |              |          |      |         |           |
|              |              |          |      |         |           |
|              | n            | 13       |      |         |           |
|              | mean (n)     | <1       |      |         |           |
|              |              |          |      |         |           |

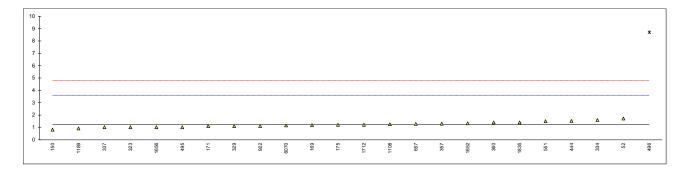
## Determination of Inorganic Chloride as CI on sample #20246; results in mg/kg

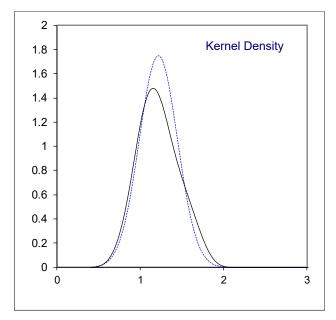

| lab          | method                        | value           | mark | z(targ)        | remarks                                      |
|--------------|-------------------------------|-----------------|------|----------------|----------------------------------------------|
| 52           | EN15492                       | 1.5             | mann | -1.62          |                                              |
| 120          | <b></b>                       |                 |      |                |                                              |
| 150          | D7319                         | 1.8             |      | -0.33          |                                              |
| 169          | D7319                         | 1.3             |      | -2.49          |                                              |
| 171          | D7319                         | 1.854           |      | -0.09          |                                              |
| 174          | D7319                         | 2               |      | 0.54           |                                              |
| 175          | INILLOO                       |                 |      |                |                                              |
| 230<br>311   | INH-23<br>EN15492             | <2<br>1.6       |      | <br>-1.19      |                                              |
| 323          | EN15492<br>EN15492            | 1.6             |      | -1.19<br>-1.75 |                                              |
| 329          | EN15492                       | 1.9             |      | 0.10           |                                              |
| 333          | EN15492                       | 1.9             |      | 0.10           |                                              |
| 334          | EN15492                       | <1.0            |      | <-3.78         | possibly a false negative test result?       |
| 337          |                               |                 |      |                |                                              |
| 343          |                               |                 |      |                |                                              |
| 357          | EN45400                       | 2.00            |      |                |                                              |
| 360<br>396   | EN15492                       | 2.08            |      | 0.88           |                                              |
| 444          | EN15492                       | 1.7             |      | -0.76          |                                              |
| 468          | 21110102                      |                 |      |                |                                              |
| 495          |                               |                 |      |                |                                              |
| 496          | EN15492                       | 2.15            |      | 1.19           |                                              |
| 511          |                               |                 |      |                |                                              |
| 541          |                               |                 |      |                |                                              |
| 551          | D7319                         | 1.5             |      | -1.62          |                                              |
| 554<br>558   |                               |                 |      |                |                                              |
| 621          |                               |                 |      |                |                                              |
| 631          |                               |                 |      |                |                                              |
| 633          |                               |                 |      |                |                                              |
| 634          |                               |                 |      |                |                                              |
| 657          | D7328                         | 2.15            | С    | 1.19           | first reported 5.85                          |
| 663          | D7040                         | 4.740           |      |                |                                              |
| 823<br>913   | D7319                         | 1.749<br>       |      | -0.55<br>      |                                              |
| 922          | D7328                         | 2.4             |      | 2.27           |                                              |
| 1108         | EN15492                       | 1.97            |      | 0.41           |                                              |
| 1189         |                               |                 |      |                |                                              |
| 1213         | D7328                         | 2.2497          |      | 1.62           |                                              |
| 1320         | EN10304-1                     | 1.79            |      | -0.37          |                                              |
| 1397         | EN15492                       | 2.02            |      | 0.62           |                                              |
| 1438<br>1523 |                               |                 |      | <b></b>        |                                              |
| 1530         |                               |                 |      |                |                                              |
| 1656         |                               |                 |      |                |                                              |
| 1707         |                               |                 |      |                |                                              |
| 1712         |                               |                 | W    |                | first reported 5.84 with test method EN15484 |
| 1726         | EN45400                       |                 |      |                |                                              |
| 1727         | EN15492                       | 2.1             |      | 0.97           |                                              |
| 1817<br>1835 | EN15492                       | 2.48            |      | 2.61           |                                              |
| 1852         |                               |                 |      |                |                                              |
| 1919         |                               |                 |      |                |                                              |
| 6070         | D7319                         | 1.9596          |      | 0.36           |                                              |
| 6072         |                               |                 |      |                |                                              |
| 6214         | EN15492                       | 1.3954          |      | -2.08          |                                              |
| 6297<br>6341 |                               |                 |      |                |                                              |
| 6358         | EN15484                       | <5,0            |      |                |                                              |
| 0000         | LITTOTOT                      | ٠٠,٥            |      |                |                                              |
|              | normality                     | OK              |      |                |                                              |
|              | n                             | 24              |      |                |                                              |
|              | outliers                      | 0               |      |                |                                              |
|              | mean (n)                      | 1.876           |      |                |                                              |
|              | st.dev. (n)                   | 0.3108<br>0.870 |      |                |                                              |
|              | R(calc.)<br>st.dev.(D7319:17) | 0.870           |      |                |                                              |
|              | R(D7319:17)                   | 0.2314          |      |                | application range: 0.75 – 50 mg/kg           |
|              | compare                       |                 |      |                |                                              |
|              | R(EN15492:12)                 | 0.641           |      |                | application range: 1 – 30 mg/kg              |
|              |                               |                 |      |                |                                              |





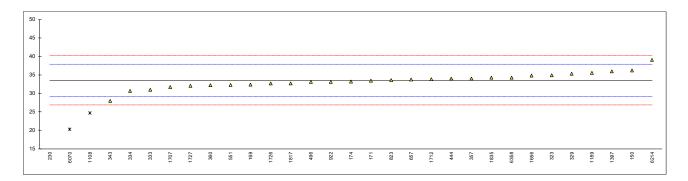

## Determination of Sulfate as SO<sub>4</sub> on sample #20246; results in mg/kg

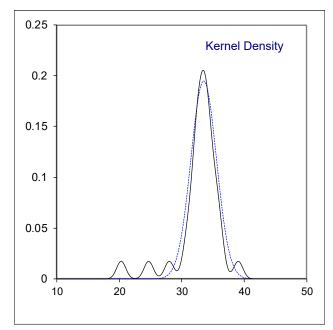

| lab          | method                   | value      | mark z(targ) | remarks                            |
|--------------|--------------------------|------------|--------------|------------------------------------|
| 52           | EN15492                  | 1.4        | 0.59         |                                    |
| 120          |                          |            |              |                                    |
| 150          | D7319                    | 0.6        | -0.92        |                                    |
| 169          | D7319                    | 0.3        | -1.49        |                                    |
| 171          | D7319                    | <1.0       |              |                                    |
| 174<br>175   | D7319                    | <1<br>     |              |                                    |
| 230          |                          |            |              |                                    |
| 311          | EN15492                  | <1.0       |              |                                    |
| 323          | EN15492                  | 0.36       | -1.38        |                                    |
| 329          | EN15492                  | 0.4        | -1.30        |                                    |
| 333          | EN15492                  | 1.1        | 0.03         |                                    |
| 334          | EN15492                  | <1.0       |              |                                    |
| 337          | EN45400                  |            |              |                                    |
| 343<br>357   | EN15492                  | <1<br>     |              |                                    |
| 360          | EN15492                  | 0.64       | -0.85        |                                    |
| 396          | 2.110.02                 |            |              |                                    |
| 444          | EN15492                  | 1.0        | -0.16        |                                    |
| 468          |                          |            |              |                                    |
| 495          | EN145400                 | 4.00       |              |                                    |
| 496<br>511   | EN15492                  | 1.28       | 0.37         |                                    |
| 511<br>541   |                          |            |              |                                    |
| 551          | D7319                    | 1.6        | 0.97         |                                    |
| 554          | 2.010                    |            | 0.07         |                                    |
| 558          |                          |            |              |                                    |
| 621          |                          |            |              |                                    |
| 631          |                          |            |              |                                    |
| 633          |                          |            |              |                                    |
| 634<br>657   | D7328                    | <br>1.244  | 0.30         |                                    |
| 663          | D1020                    |            |              |                                    |
| 823          | D7319                    | 1.607      | 0.99         |                                    |
| 913          |                          |            |              |                                    |
| 922          | D7328                    | 1.8        | 1.35         |                                    |
| 1108         | EN15492                  | 0.76       | -0.62        |                                    |
| 1189<br>1213 | D7328                    | <br>1.3210 | 0.44         |                                    |
| 1320         | EN10304-1                | 1.67       | 1.11         |                                    |
| 1397         | EN15492                  | 1.21       | 0.23         |                                    |
| 1438         |                          |            |              |                                    |
| 1523         |                          |            |              |                                    |
| 1530         |                          |            |              |                                    |
| 1656         |                          |            |              |                                    |
| 1707<br>1712 |                          |            |              |                                    |
| 1712         |                          |            |              |                                    |
| 1727         | EN15492                  | 1.0        | -0.16        |                                    |
| 1817         |                          |            |              |                                    |
| 1835         | EN15492                  | 1.29       | 0.39         |                                    |
| 1852         |                          |            |              |                                    |
| 1919<br>6070 | D7319                    | 0.8431     | -0.46        |                                    |
| 6070<br>6072 | פוטום                    | 0.8431     | -0.46        |                                    |
| 6214         | EN15492                  | 1.3973     | 0.59         |                                    |
| 6297         |                          |            |              |                                    |
| 6341         |                          |            |              |                                    |
| 6358         |                          |            |              |                                    |
|              |                          | OV         |              |                                    |
|              | normality<br>n           | OK<br>21   |              |                                    |
|              | n<br>outliers            | 0          |              |                                    |
|              | mean (n)                 | 1.087      |              |                                    |
|              | st.dev. (n)              | 0.4465     |              |                                    |
|              | R(calc.)                 | 1.250      |              |                                    |
|              | st.dev.(D7319:17)        | 0.5265     |              | " " 4 OC "                         |
|              | R(D7319:17)              | 1.474      |              | application range: 1 – 20 mg/kg    |
|              | compare<br>R(EN15492:12) | 0.3780     |              | application range: 1 - 20 mg/kg    |
|              | R(D7328:17)              | 1.0861     |              | application range: 0.55 – 20 mg/kg |
|              | (= · -= 0· · · )         |            |              | 11                                 |






## Determination of Sulfur on sample #20246; results in mg/kg


| lab          | method                          | value           | mark     | z(targ)      | remarks                                                         |
|--------------|---------------------------------|-----------------|----------|--------------|-----------------------------------------------------------------|
| 52           | EN15486                         | 1.7             | mun      | 0.40         | Tomario                                                         |
| 120          | LIVIOTOU                        | 1.7             |          | 0.40         |                                                                 |
| 150          | D5453                           | 8.0             |          | -0.35        |                                                                 |
| 169          | D5453                           | 1.18            |          | -0.03        |                                                                 |
| 171          | D5453                           | 1.091           |          | -0.10        |                                                                 |
| 174          |                                 |                 |          |              |                                                                 |
| 175          | D5453                           | 1.2             |          | -0.01        |                                                                 |
| 230          |                                 |                 |          |              |                                                                 |
| 311          | EN15486                         | <5.0            |          |              |                                                                 |
| 323          | EN15486                         | 1.0             |          | -0.18        |                                                                 |
| 329          | D5453                           | 1.1             |          | -0.10        |                                                                 |
| 333          |                                 |                 |          |              |                                                                 |
| 334          | D5453                           | 1.6             |          | 0.32         |                                                                 |
| 337          | EN15486                         | 1.0             |          | -0.18        |                                                                 |
| 343          | D5453                           | <1              |          |              |                                                                 |
| 357          | D5453                           | 1.3             |          | 0.07         |                                                                 |
| 360          | EN15486                         | 1.4             |          | 0.15         |                                                                 |
| 396          | EN15406                         | 1.50            |          | 0.25         |                                                                 |
| 444<br>468   | EN15486<br>EN15486              | 1.52            |          | 0.25         |                                                                 |
| 495          | ISO20846                        | <2<br>1.01      |          | -0.17        |                                                                 |
| 496          | EN15485                         | 8.7             | R(0.01)  | 6.26         |                                                                 |
| 511          | LN 13403                        |                 | 11(0.01) |              |                                                                 |
| 541          |                                 |                 |          |              |                                                                 |
| 551          | D5453                           | 1.5             |          | 0.24         |                                                                 |
| 554          | 20100                           |                 |          |              |                                                                 |
| 558          |                                 |                 |          |              |                                                                 |
| 621          |                                 |                 |          |              |                                                                 |
| 631          |                                 |                 |          |              |                                                                 |
| 633          |                                 |                 |          |              |                                                                 |
| 634          |                                 |                 |          |              |                                                                 |
| 657          | D5453                           | 1.28            |          | 0.05         |                                                                 |
| 663          |                                 |                 |          |              |                                                                 |
| 823          | D5453                           | <1.0            |          |              |                                                                 |
| 913          | DE4E2                           | 4.4             |          | 0.40         |                                                                 |
| 922          | D5453                           | 1.1             |          | -0.10        |                                                                 |
| 1108<br>1189 | EN15485                         | 1.24            |          | 0.02         |                                                                 |
| 1213         | D5453                           | 0.9<br><2       |          | -0.26        |                                                                 |
| 1320         | D0400                           |                 |          |              |                                                                 |
| 1397         |                                 |                 |          |              |                                                                 |
| 1438         |                                 |                 |          |              |                                                                 |
| 1523         |                                 |                 |          |              |                                                                 |
| 1530         |                                 |                 |          |              |                                                                 |
| 1656         | EN15486                         | 1.0             |          | -0.18        |                                                                 |
| 1707         |                                 |                 |          |              |                                                                 |
| 1712         | EN15486                         | 1.2             |          | -0.01        |                                                                 |
| 1726         |                                 |                 |          |              |                                                                 |
| 1727         |                                 |                 |          |              |                                                                 |
| 1817         | ENIAE 400                       | 4.4             |          | 0.45         |                                                                 |
| 1835<br>1852 | EN15486<br>ISO20846             | 1.4<br>1.31     |          | 0.15<br>0.08 |                                                                 |
| 1919         | 13020040                        | 1.31            |          | 0.00         |                                                                 |
| 6070         | D5453                           | 1.146           |          | -0.06        |                                                                 |
| 6072         | D0-100                          |                 |          |              |                                                                 |
| 6214         |                                 |                 |          |              |                                                                 |
| 6297         |                                 |                 |          |              |                                                                 |
| 6341         |                                 |                 |          |              |                                                                 |
| 6358         |                                 |                 |          |              |                                                                 |
|              |                                 |                 |          |              |                                                                 |
|              | normality                       | OK              |          |              |                                                                 |
|              | n                               | 23              |          |              |                                                                 |
|              | outliers                        | 1               |          |              |                                                                 |
|              | mean (n)                        | 1.216           |          |              |                                                                 |
|              | st.dev. (n)                     | 0.2284<br>0.640 |          |              |                                                                 |
|              | R(calc.)<br>st.dev.(EN15485:07) | 1.1947          |          |              |                                                                 |
|              | R(EN15485:07)                   | 3.345           |          |              | application range: 7 – 20 mg/kg                                 |
|              | compare                         | 0.0 10          |          |              | approximation to marky                                          |
|              | R(EN15468:07)                   | 1.865           |          |              | application range: 5 – 20 mg/kg                                 |
|              | R(D5453:19a) <sup>′</sup>       | 0.671           |          |              | at a concentration < 400 mg/kg; application range: 1-8000 mg/kg |
|              |                                 |                 |          |              |                                                                 |






## Determination of Nonvolatile matter on sample #20249; results in mg/100mL

| lah          | mathod              | value        | mark      | 7(tara) | romarks             |
|--------------|---------------------|--------------|-----------|---------|---------------------|
| lab<br>52    | method<br>EN15601   | value<br>>25 | mark      | z(targ) | remarks             |
| 52<br>120    | EN15691             | >25<br>      |           |         |                     |
| 150          | D1353               | 36.2         |           | 1.21    |                     |
| 169          | D1353               | 32.4         |           | -0.50   |                     |
| 171          | D1353               | 33.45        |           | -0.03   |                     |
| 174          | D1353               | 33.2         |           | -0.14   |                     |
| 175          | 21000               |              |           |         |                     |
| 230          | D1353               | 0.9          | C,R(0.01) | -14.74  | first reported 40.9 |
| 311          | EN15691             | >25          | -, (-, -, |         |                     |
| 323          | EN15691             | 34.9         |           | 0.63    |                     |
| 329          | EN15691             | 35.3         |           | 0.81    |                     |
| 333          | EN15691             | 31           |           | -1.14   |                     |
| 334          | EN15691             | 30.7         |           | -1.27   |                     |
| 337          |                     |              |           |         |                     |
| 343          | EN15691             | 28           |           | -2.49   |                     |
| 357          | D1353               | 34           |           | 0.22    |                     |
| 360          | EN15691             | 32.2         |           | -0.59   |                     |
| 396          | =111=001            |              |           |         | m                   |
| 444          | EN15691             | 34           | С         | 0.22    | first reported 17   |
| 468          |                     |              |           |         |                     |
| 495          | ENACCO4             | 22.4         |           | 0.40    |                     |
| 496<br>511   | EN15691             | 33.1         |           | -0.19   |                     |
| 541          |                     |              |           |         |                     |
| 551          | D1353               | 32.3         |           | -0.55   |                     |
| 554          | D 1000              |              |           | -0.55   |                     |
| 558          |                     |              |           |         |                     |
| 621          |                     |              |           |         |                     |
| 631          |                     |              |           |         |                     |
| 633          |                     |              |           |         |                     |
| 634          |                     |              |           |         |                     |
| 657          | D1353               | 33.8         |           | 0.13    |                     |
| 663          |                     |              |           |         |                     |
| 823          | D1353               | 33.6         |           | 0.04    |                     |
| 913          |                     |              |           |         |                     |
| 922          | D1353               | 33.1         |           | -0.19   |                     |
| 1108         | EN15691             | 24.7         | R(0.05)   | -3.98   |                     |
| 1189         | D1353               | 35.6         |           | 0.94    |                     |
| 1213         |                     |              |           |         |                     |
| 1320<br>1397 | EN15691             | 36           |           | 1.12    |                     |
| 1438         | LIVIOUSI            |              |           | 1.12    |                     |
| 1523         |                     |              |           |         |                     |
| 1530         |                     |              |           |         |                     |
| 1656         | EN15691             | 34.8         |           | 0.58    |                     |
| 1707         | EN15691             | 31.7         |           | -0.82   |                     |
| 1712         | EN15691             | 33.85        |           | 0.15    |                     |
| 1726         | EN15691             | 32.7         |           | -0.37   |                     |
| 1727         | EN15691             | 32.1         |           | -0.64   |                     |
| 1817         | In house            | 32.75        |           | -0.35   |                     |
| 1835         | EN15691             | 34.3         |           | 0.36    |                     |
| 1852         |                     |              |           |         |                     |
| 1919         | D.4050              |              | D(0.64)   |         |                     |
| 6070         | D1353               | 20.3         | R(0.01)   | -5.97   |                     |
| 6072         | ENACCO4             | 20.05        |           |         |                     |
| 6214         | EN15691             | 39.05        |           | 2.50    |                     |
| 6297<br>6341 |                     |              |           |         |                     |
| 6358         | EN15691             | 34.3         |           | 0.36    |                     |
| 0000         | LIVIOUSI            | 04.0         |           | 0.50    |                     |
|              | normality           | not OK       |           |         |                     |
|              | n                   | 28           |           |         |                     |
|              | outliers            | 3            |           |         |                     |
|              | mean (n)            | 33.514       |           |         |                     |
|              | st.dev. (n)         | 2.0470       |           |         |                     |
|              | R(calc.)            | 5.732        |           |         |                     |
|              | st.dev.(EN15691:09) | 2.2122       |           |         |                     |
|              | R(EN15691:09)       | 6.194        |           |         |                     |
|              | compare             | 14 464       |           |         |                     |
|              | R(D1353:13)         | 14.461       |           |         |                     |





#### **APPENDIX 2**

#### Number of participants per country

- 1 lab in ARGENTINA
- 3 labs in BELGIUM
- 3 labs in BRAZIL
- 1 lab in BULGARIA
- 1 lab in CANADA
- 3 labs in COLOMBIA
- 1 lab in CROATIA
- 1 lab in FINLAND
- 3 labs in FRANCE
- 4 labs in GERMANY
- 1 lab in GREECE
- 1 lab in HUNGARY
- 1 lab in INDIA
- 1 lab in INDONESIA
- 1 lab in ISRAEL
- 1 lab in ITALY
- 1 lab in MAURITIUS
- 2 labs in NETHERLANDS
- 1 lab in PAKISTAN
- 1 lab in PERU
- 3 labs in PHILIPPINES
- 2 labs in POLAND
- 1 lab in SINGAPORE
- 1 lab in SLOVAKIA
- 1 lab in SOUTH KOREA
- 4 labs in SPAIN
- 2 labs in SWEDEN
- 2 labs in THAILAND
- 1 lab in TURKEY
- 2 labs in UNITED KINGDOM
- 7 labs in UNITED STATES OF AMERICA
- 1 lab in VIETNAM

#### **APPENDIX 3**

#### **Abbreviations**

C = final test result after checking of first reported suspect test result

D(0.01) = outlier in Dixon's outlier test D(0.05) = straggler in Dixon's outlier test D(0.01) = outlier in Grubbs' outlier test D(0.05) = straggler in Grubbs' outlier test D(0.05) = outlier in Double Grubbs' outlier test D(0.05) = straggler in Double Grubbs' outlier test

R(0.01) = outlier in Rosner's outlier test R(0.05) = straggler in Rosner's outlier test

E = calculation difference between reported test result and result calculated by iis

W = test result withdrawn on request of participant ex = test result excluded from statistical evaluation

n.a. = not applicable
n.e. = not evaluated
n.d. = not detected
fr. = first reported
SDS = Safety Data Sheet

#### Literature

- 1 iis, Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018
- W. Horwitz and R. Albert, J. AOAC Int. <u>79-3</u>, 589 (1996)
- 3 ASTM E178:02
- 4 ASTM E1301:95(2003)
- 5 ISO5725:86
- 6 ISO5725, parts 1-6:94
- 7 ISO13528:05
- 8 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 9 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 10 IP367/84
- 11 DIN38402 T41/42
- 12 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 13 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 14 Analytical Methods Committee, Technical brief, No 4, January 2001
- 15 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry, Analyst, 127, 1359-1364 (2002)
- Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, 25(2), 165-172, (1983)
- 17 M.A. Gonçalves et.al., Sensors and Actuators, <u>B158</u>, 327-332 (2011)